Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Toxicology ; 507: 153886, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39002880

ABSTRACT

Benzo[a]pyrene (BaP) is associated with the development of lung cancer, but the underlying mechanism has not been completely clarified. Here, we used 10 µM BaP to induce malignant transformation of human bronchial epithelial BEAS-2B cells, named BEAS-2B-T. Results indicated that BaP (6.25, 12.5 and 25 µM) treatment significantly promoted the migration and invasion of BEAS-2B-T cells. Meanwhile, BaP exposure inhibited ferroptosis in BEAS-2B-T, ferroptosis-related indexes Fe2+, malondialdehyde (MDA), lipid peroxidation (LPO) and reactive oxygen species (ROS) decreased significantly. The protein level of ferroptosis-related molecule transferrin receptor (TFRC) decreased significantly, while solute carrier family 7 membrane 11 (SLC7A11), ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) increased significantly. The intervention of ferroptosis dramatically effected the migration and invasion of BEAS-2B-T induced by BaP. Furthermore, the expression of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) was markedly increased after BaP exposure. YTHDF1 knockdown inhibited BEAS-2B-T migration and invasion by promoting ferroptosis. In the meantime, the contents of Fe2+, MDA, LPO and ROS increased significantly, TFRC was markedly increased, and SLC7A11, FTH1, and GPX4 were markedly decreased. Moreover, overexpression of YTHDF1 promoted BEAS-2B-T migration and invasion by inhibiting ferroptosis. Importantly, knockdown of YTHDF1 promoted ferroptosis and reduced BEAS-2B-T migration and invasion during BaP exposure, and overexpression of YTHDF1 increased migration and invasion of BEAS-2B-T by inhibiting ferroptosis during BaP exposure. RNA immunoprecipitation assays indicated that the binding of YTHDF1 to SLC7A11 and FTH1 markedly increased after YTHDF1 overexpression. Therefore, we concluded that BaP promotes the malignant progression of BEAS-2B-T cells through YTHDF1 upregulating SLC7A11 and FTH1 to inhibit ferroptosis. This study reveals new epigenetic and ferroptosis markers for preventing and treating lung cancer induced by environmental carcinogens.

3.
Sci Data ; 11(1): 546, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806531

ABSTRACT

For highly autonomous vehicles, human does not need to operate continuously vehicles. The brain-computer interface system in autonomous vehicles will highly depend on the brain states of passengers rather than those of human drivers. It is a meaningful and vital choice to translate the mental activities of human beings, essentially playing the role of advanced sensors, into safe driving. Quantifying the driving risk cognition of passengers is a basic step toward this end. This study reports the creation of an fNIRS dataset focusing on the prefrontal cortex activity in fourteen types of highly automated driving scenarios. This dataset considers age, sex and driving experience factors and contains the data collected from an 8-channel fNIRS device and the data of driving scenarios. The dataset provides data support for distinguishing the driving risk in highly automated driving scenarios via brain-computer interface systems, and it also provides the possibility of preventing potential hazards in some scenarios, in which risk remains at a high value for an extended period, before hazard occurs.


Subject(s)
Automobile Driving , Cognition , Adult , Female , Humans , Male , Automation , Brain-Computer Interfaces , Prefrontal Cortex/physiology , Spectroscopy, Near-Infrared
4.
Bioconjug Chem ; 35(6): 737-743, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38738511

ABSTRACT

Radiation therapy is one of the most common treatments for cancer. However, enhancing tumors' radiation sensitivity and overcoming tolerance remain a challenge. Previous studies have shown that the Ras signaling pathway directly influences tumor radiation sensitivity. Herein, we designed a series of Ras-targeting stabilized peptides, with satisfactory binding affinity (KD = 0.13 µM with HRas) and good cellular uptake. Peptide H5 inhibited downstream phosphorylation of ERK and increased radio-sensitivity in HeLa cells, resulting in significantly reduced clonogenic survival. The stabilized peptides, designed with an N-terminal nucleation strategy, acted as potential radio-sensitizers and broadened the applications of this kind of molecule. This is the first report of using stabilized peptides as radio-sensitizers, broadening the applications of this kind of molecule.


Subject(s)
Peptides , Radiation Tolerance , ras Proteins , Humans , Peptides/chemistry , Peptides/pharmacology , HeLa Cells , Radiation Tolerance/drug effects , ras Proteins/metabolism , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry , Cell Survival/drug effects , Phosphorylation/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/radiotherapy
5.
Environ Pollut ; 351: 124081, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697251

ABSTRACT

Microcystin-leucine arginine (MC-LR) is a common cyantotoxin produced by hazardous cyanobacterial blooms, and eutrophication is increasing the contamination level of MC-LR in drinking water supplies and aquatic foods. MC-LR has been linked to colorectal cancer (CRC) progression associated with tumor microenvironment, however, the underlying mechanism is not clearly understood. In present study, by using GEO, KEGG, GESA and ImmPort database, MC-LR related differentially expressed genes (DEGs) and pathway- and gene set-enrichment analysis were performed. Of the three identified DEGs (CXCL1, GUCA2A and GDF15), CXCL1 was shown a positive association with tumor infiltration, and was validated to have a dominantly higher upregulation in MC-LR-treated tumor-associated macrophages (TAMs) rather than in MC-LR-treated CRC cells. Both CRC cell/macrophage co-culture and xenograft mouse models indicated that MC-LR stimulated TAMs to secrete CXCL1 resulting in promoted proliferation, migration, and invasion capability of CRC cells. Furtherly, IP-MS assay found that interaction between TAMs-derived CXCL1 and CRC cell-derived IGHG1 may enhance CRC cell proliferation and migration after MC-LR treatment, and this effect can be attenuated by silencing IGHG1 in CRC cell. In addition, molecular docking analysis, co-immunoprecipitation and immunofluorescence further proved the interactions between CXCL1 and IGHG1. In conclusion, CXCL1 secreted by TAMs can trigger IGHG1 expression in CRC cells, which provides a new clue in elucidating the mechanism of MC-LR-mediated CRC progression.


Subject(s)
Chemokine CXCL1 , Colorectal Neoplasms , Signal Transduction , Tumor-Associated Macrophages , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Humans , Animals , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Mice , Tumor-Associated Macrophages/metabolism , Microcystins/toxicity , Marine Toxins , Cell Line, Tumor , Disease Progression , Cell Proliferation/drug effects , Tumor Microenvironment
6.
Phytomedicine ; 130: 155737, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38772183

ABSTRACT

BACKGROUND: Caenorhabditis elegans (C. elegans) has been recognized for being a useful model organism in small-molecule drug screens and drug efficacy investigation. However, there remain bottlenecks in evaluating such processes as drug uptake and distribution due to a lack of appropriate chemical tools. PURPOSE: This study aims to prepare fluorescence-labeled leonurine as an example to monitor drug uptake and distribution of small molecule in C. elegans and living cells. METHODS: FITC-conjugated leonurine (leonurine-P) was synthesized and characterized by LC/MS, NMR, UV absorption and fluorescence intensity. Leonurine-P was used to stain C. elegans and various mammalian cell lines. Different concentrations of leonurine were tested in conjunction with a competing parent molecule to determine whether leonurine-P and leonurine shared the same biological targets. Drug distribution was analyzed by imaging. Fluorometry in microplates and flow cytometry were performed for quantitative measurements of drug uptake. RESULTS: The UV absorption peak of leonurine-P was 490∼495 nm and emission peak was 520 nm. Leonurine-P specifically bound to endogenous protein targets in C. elegans and mammalian cells, which was competitively blocked by leonurine. The highest enrichment levels of leonurine-P were observed around 72 h following exposure in C. elegans. Leonurine-P can be used in a variety of cells to observe drug distribution dynamics. Flow cytometry of stained cells can be facilely carried out to quantitatively detect probe signals. CONCLUSIONS: The strategy of fluorescein-labeled drugs reported herein allows quantification of drug enrichment and visualization of drug distribution, thus illustrates a convenient approach to study phytodrugs in pharmacological contexts.


Subject(s)
Caenorhabditis elegans , Gallic Acid , Animals , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacokinetics , Gallic Acid/metabolism , Humans , Fluorescein-5-isothiocyanate/analogs & derivatives , Flow Cytometry , Fluorescence , Fluorescent Dyes
7.
Front Microbiol ; 15: 1342356, 2024.
Article in English | MEDLINE | ID: mdl-38550860

ABSTRACT

Introduction: The gut-liver axis has emerged as a focal point in chronic liver disorders, prompting more research into the role of the gut microbiota in liver cirrhosis. In individuals with liver cirrhosis, changes in the structure and function of the gut microbiota are closely tied to clinical prognosis. However, there is a scarcity of bibliometric evaluations conducted in this particular field. Methods: This study is aiming to conduct a complete analysis of the knowledge structure and centers pertaining to gut microbiota in liver cirrhosis using bibliometric methods. Publications on gut microbiota and liver cirrhosis from 2001 to 2023 are sourced from the Web of Science Core Collection. For the bibliometric analysis, we employ VOSviewer, CiteSpace, and the R package "bibliometrix". Results: Our study encompasses a comprehensive collection of 3109 articles originating from 96 countries, with notable contributions from leading nations such as the United States and China. The quantity of publications concerning the gut microbiota of liver cirrhosis rises annually. The University of California San Diego, Virginia Commonwealth University, Zhejiang University are the primary research institutions. World Journal of Gastroenterology publishes the most papers in this field, while hepatology is the most frequently co-cited journal. These publications come from a total of 15,965 authors, and the most prolific authors are Bajaj Jasmohan S., Schnabl Bernd and Gillevet Patrick M., while the most co-cited authors are Bajaj Jasmohan S., Younossi Zobair M., and Reiner Wiest. In addition, "dysbiosis", "gut microbiota", "intestinal barrier", "fecal microbiota transplantation", and "complement-system" are the primary keywords of research trends in recent years. Discussion: This study offering a comprehensive insight into the research dynamics surrounding gut microbiota in patients with liver cirrhosis. It delineates the current research frontiers and hotspots, serving as a valuable guide for scholars.

8.
J Dent Sci ; 19(1): 614-619, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303894

ABSTRACT

Background/purpose: 4-Nitroquinoline 1-oxide (4NQO)-induced tongue carcinoma and 7,12-dimethlybenz(a)anthracene (DMBA)-induced cheek pouch carcinoma are the most common and classical chemical carcinogen-induced animal models of oral carcinogenesis. The purpose of this study was to provide the research trends and characteristics of 4NQO- and DMBA-induced experimental oral carcinogenesis. Materials and methods: The papers on both 4NQO- and DMBA-induced experimental oral carcinogenesis were published since 1962. All the eligible papers were retrieved on 12 May 2023 from the Scopus database. Results: There were 506 and 349 papers on 4NQO- and DMBA-induced experimental oral carcinogenesis with 10,152 and 6306 citations, respectively. The common distinctive keywords such as rat, tongue neoplasms, drinking water, tumor microenvironment, and cyclooxygenase (COX)-2 were identified in the papers on 4NQO; and the common keywords such as hamster, cheek pouch, lipid peroxidation, glutathione, antioxidants, and topical drug administration were identified in the papers on DMBA. Importantly, 105 and 65 potential chemopreventive agents were identified from the papers on 4NQO and DMBA, respectively. Furthermore, 15 promising agents such as COX-2 inhibitor, curcumin, garlic were researched concurrently in both the two animal models. Conclusion: This study for the first time reports the scientometric characteristics of 4NQO- and DMBA-induced experimental oral carcinogenesis. Importantly, we identify a valuable profile for oral cancer chemopreventive agents, which will aid researchers and investigators in studying oral cancer chemoprevention.

9.
BMC Infect Dis ; 24(1): 199, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350843

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an evolving global pandemic, and nanobodies, as well as other single-domain antibodies (sdAbs), have been recognized as a potential diagnostic and therapeutic tool for infectious diseases. High-throughput screening techniques such as phage display have been developed as an alternative to in vivo immunization for the discovery of antibody-like target-specific binders. METHODS: We designed and constructed a highly diverse synthetic phage library sdAb-U (single-domain Antibody - Universal library ) based on a human framework. The SARS-CoV-2 receptor-binding domain (RBD) was expressed and purified. The universal library sdAb-U was panned against the RBD protein target for two rounds, followed by monoclonal phage ELISA (enzyme-linked immunosorbent assay) to identify RBD-specific binders (the first stage). High-affinity binders were sequenced and the obtained CDR1 and CDR2 sequences were combined with fully randomized CDR3 to construct a targeted (focused) phage library sdAb-RBD, for subsequent second-stage phage panning (also two rounds) and screening. Then, sequences with high single-to-background ratios in phage ELISA were selected for expression. The binding affinities of sdAbs to RBD were measured by an ELISA-based method. In addition, we conducted competition ELISA (using ACE2 ectodomain S19-D615) and SARS-CoV-2 pseudovirus neutralization assays for the high-affinity RBD-binding sdAb39. RESULTS: Significant enrichments were observed in both the first-stage (universal library) and the second-stage (focused library) phage panning. Five RBD-specific binders were identified in the first stage with high ELISA signal-to-background ratios. In the second stage, we observed a much higher possibility of finding RBD-specific clones in phage ELISA. Among 45 selected RBD-positive sequences, we found eight sdAbs can be well expressed, and five of them show high-affinity to RBD (EC50 < 100nM). We finally found that sdAb39 (EC50 ~ 4nM) can compete with ACE2 for binding to RBD. CONCLUSION: Overall, this two-stage strategy of synthetic phage display libraries enables rapid selection of SARS-CoV-2 RBD sdAb with potential therapeutic activity, and this two-stage strategy can potentially be used for rapid discovery of sdAbs against other targets.


Subject(s)
Bacteriophages , COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2/genetics , Single-Domain Antibodies/genetics , Single-Domain Antibodies/chemistry , Angiotensin-Converting Enzyme 2 , COVID-19/diagnosis , Antibodies, Viral , Antibodies, Neutralizing
10.
Org Lett ; 25(48): 8661-8665, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38009639

ABSTRACT

Through systematic optimization of halopyridinium compounds, we established a peptide coupling protocol utilizing 4-iodine N-methylpyridinium (4IMP) for solid-phase peptide synthesis (SPPS). The 4IMP coupling reagent is easily prepared, bench stable, and cost-effective. Employing 4IMP in the SPPS process has showcased remarkable chemoselectivity and efficiency, effectively eliminating racemization and epimerization. This achievement has been substantiated through the successful synthesis of a range of peptides via the direct utilization of commercially available amino acid substrates for SPPS.


Subject(s)
Peptides , Pyridinium Compounds , Peptides/chemistry , Amino Acids/chemistry , Solid-Phase Synthesis Techniques/methods
11.
Trends Mol Med ; 29(11): 951-967, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37704494

ABSTRACT

The liver can succumb to oxidant damage during the development of chronic liver diseases. Despite their physiological relevance to hepatic homeostasis, excessive reactive oxygen/nitrogen species (ROS/RNS) production under pathological conditions is detrimental to all liver constituents. Chronic oxidative stress coupled to unresolved inflammation sets in motion the activation of profibrogenic hepatic stellate cells (HSCs) and later pathogenesis of liver fibrosis, cirrhosis, and liver cancer. The liver antioxidant and repair systems, along with autophagic and ferroptotic machineries, are implicated in the onset and trajectory of disease development. In this review, we discuss the ROS/RNS-related mechanisms underlying liver fibrosis of distinct etiologies and highlight preclinical and clinical trials of antifibrotic therapies premised on remediating oxidative/nitrosative stress in hepatocytes or targeting HSC activation.

12.
Sci Rep ; 13(1): 15839, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739947

ABSTRACT

For high-level automated vehicles, the human being acts as the passenger instead of the driver and does not need to operate vehicles, it makes the brain-computer interface system of high-level automated vehicles depend on the brain state of passengers rather than that of drivers. Particularly when confronting challenging driving situations, how to implement the mental states of passengers into safe driving is a vital choice in the future. Quantifying the cognition of the driving risk of the passenger is a basic step in achieving this goal. In this paper, the passengers' mental activities in low-risk episode and high-risk episode were compared, the influences on passengers' mental activities caused by driving scenario risk was first explored via fNIRS. The results showed that the mental activities of passengers caused by driving scenario risk in the Brodmann area 10 are very active, which was verified by examining the real-driving data collected in corresponding challenging experiments, and there is a positive correlation between the cerebral oxygen and the driving risk field. This initial finding provides a possible solution to design a human-centred intelligent system to promise safe driving for high-level automated vehicles using passengers' driving risk cognition.


Subject(s)
Cognition , Prefrontal Cortex , Humans , Brain , Spectrum Analysis , Autonomous Vehicles
13.
Heliyon ; 9(8): e18764, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576285

ABSTRACT

Progression to a severe condition remains a major risk factor for the COVID-19 mortality. Robust models that predict the onset of severe COVID-19 are urgently required to support sensitive decisions regarding patients and their treatments. In this study, we developed a multivariate survival model based on early-stage CT images and other physiological indicators and biomarkers using artificial-intelligence analysis to assess the risk of severe COVID-19 onset. We retrospectively enrolled 338 adult patients admitted to a hospital in China (severity rate, 31.9%; mortality rate, 0.9%). The physiological and pathological characteristics of the patients with severe and non-severe outcomes were compared. Age, body mass index, fever symptoms upon admission, coexisting hypertension, and diabetes were the risk factors for severe progression. Compared with the non-severe group, the severe group demonstrated abnormalities in biomarkers indicating organ function, inflammatory responses, blood oxygen, and coagulation function at an early stage. In addition, by integrating the intuitive CT images, the multivariable survival model showed significantly improved performance in predicting the onset of severe disease (mean time-dependent area under the curve = 0.880). Multivariate survival models based on early-stage CT images and other physiological indicators and biomarkers have shown high potential for predicting the onset of severe COVID-19.

15.
Eur Phys J C Part Fields ; 83(7): 599, 2023.
Article in English | MEDLINE | ID: mdl-37448709

ABSTRACT

This Letter proposes a new signature for confining dark sectors at the Large Hadron Collider. Under the assumption of a QCD-like hidden sector, hadronic jets containing stable dark bound states could manifest in proton-proton collisions. We present a simplified model with a Z' boson yielding the production of jets made up of dark bound states and subsequently leading to the decays of those that are unstable to τ leptons and Standard Model quarks. The resulting signature is characterised by non-isolated τ lepton pairs inside semi-visible jets. We estimate the constraints on our model from existing CMS and ATLAS analyses. We propose a set of variables that leverage the leptonic content of the jet and exploit them in a supervised jet tagger to enhance the signal-to-background separation. Furthermore, we discuss the performance and limitations of current triggers for accessing sub-TeV Z' masses, as well as possible strategies that can be adopted by experiments to access such low mass regions. We estimate that with the currently available triggers, a high mass search can claim a 5σ discovery (exclusion) of the Z' boson with a mass up to 4.5 TeV (5.5 TeV) with the full Run 2 data of the LHC when the fraction of unstable dark hadrons decaying to τ lepton pairs is around 50%, and with a coupling of the Z' to right-handed up-type quarks of 0.25. Furthermore, we show that, with new trigger strategies for Run 3, it may be possible to access Z' masses down to 700 GeV, for which the event topology is still composed of two resolved semi-visible jets.

16.
Biochem Biophys Rep ; 35: 101508, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37448811

ABSTRACT

Peptides can be used as effective molecular tool for covalent modification of proteins and play important roles in ligand directed covalent modification. Tyr-selective protein modifications exert a profound impact on protein functionality. Here, we developed a general strategy that involves nucleophilic addition of alkyne for tyrosine modification. The terminal alkyne of propargyl sulfonium is motivated by the sulfonium center to react with phenolic hydroxyl. This approach provides a straightforward method for tyrosine modification due to its high yield in aqueous solution at physiological temperature. In addition, cyclic peptides could be obtained via adjusting pH to 8.0 from peptides consisting of tyrosine and methionine modified by propargyl bromide, and the resulting cyclic peptides are proved to have better stability, excellent 2-mercaptopyridine resistance and improved cellular uptakes. Furthermore, molecules made from the propargylated sulfonium have the potential to be used as warheads against tyrosine containing biomolecules. Collectively, we develop a direct and uncomplicated technique for modifying tyrosine residues, the strategy concerned can be widely utilized to construct stable peptides and biomolecules imaging.

17.
Gut Microbes ; 15(1): 2221485, 2023.
Article in English | MEDLINE | ID: mdl-37345844

ABSTRACT

Current evidence indicates that the next-generation probiotic Akkermansia muciniphila (A. muciniphila) has therapeutic potential for nonalcoholic fatty liver disease (NAFLD), especially its inflammatory stage known as nonalcoholic steatohepatitis (NASH). However, the mechanisms of A. muciniphila in NASH prevention remain unknown. Here, A. muciniphila supplementation prevented hepatic inflammation in high-fat diet-induced NASH mice, characterized by reduced hepatic proinflammatory macrophages (M1) and γδT and γδT17 cells. Consistently, hepatic M1 and γδT cells were enriched in biopsy-proven NASH patients and high-fat/high-carbohydrate diet-induced NASH mice. Antibiotics reduced hepatic M1, γδT and γδT17 cells in NASH mice. Furthermore, A. muciniphila inhibited intestinal barrier disruption and accordingly downregulated hepatic Toll-like receptor 2 (TLR2) expression in NASH mice. The activation of TLR2 by lipoteichoic acid enriched hepatic γδT17 cells (not M1) in normal diet-fed mice and neutralized the γδT cell-lowering and liver inflammation-protecting effects of A. muciniphila in NASH mice. Additionally, activated γδT cells could promote macrophage polarization via IL-17. Our study first supported that A. muciniphila prevented NASH by modulating TLR2-activated γδT17 cells and further macrophage polarization, facilitating clinical therapeutic applications.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Mice , Toll-Like Receptor 2/genetics , Verrucomicrobia , Inflammation , Macrophages
18.
Article in English | MEDLINE | ID: mdl-37276092

ABSTRACT

Multiagent deep reinforcement learning (DRL) makes optimal decisions dependent on system states observed by agents, but any uncertainty on the observations may mislead agents to take wrong actions. The mean-field actor-critic (MFAC) reinforcement learning is well-known in the multiagent field since it can effectively handle a scalability problem. However, it is sensitive to state perturbations that can significantly degrade the team rewards. This work proposes a Robust MFAC (RoMFAC) reinforcement learning that has two innovations: 1) a new objective function of training actors, composed of a policy gradient function that is related to the expected cumulative discount reward on sampled clean states and an action loss function that represents the difference between actions taken on clean and adversarial states and 2) a repetitive regularization of the action loss, ensuring the trained actors to obtain excellent performance. Furthermore, this work proposes a game model named a state-adversarial stochastic game (SASG). Despite the Nash equilibrium of SASG may not exist, adversarial perturbations to states in the RoMFAC are proven to be defensible based on SASG. Experimental results show that RoMFAC is robust against adversarial perturbations while maintaining its competitive performance in environments without perturbations.

19.
Toxics ; 11(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37235262

ABSTRACT

As a typical environmental endocrine disrupting chemical (EDC), di-(2-ethylhexyl) phthalate (DEHP) is thought to be related to reproductive disorders, especially in males. Growing evidence suggests that various EDCs may result in an impaired telomere structure and function, which is associated with male infertility. However, the adverse effect of DEHP on telomeres in male reproductive cells has rarely been studied, and the related mechanisms remain unclear. In this study, we tested the effects of mono-(2-ethylhexyl) phthalate (MEHP), the primary metabolite of DEHP, on telomere dysfunction in mouse spermatogonia-derived cells (GC-1) and the potential role of TERT and c-Myc in MEHP-induced spermatogenic cell damage. Results showed that MEHP induced cell viability inhibition, G0/G1 phase cell cycle arrest, and apoptosis in GC-1 cells in a dose-dependent manner. Shortened telomeres, reduced telomerase activity, and decreased expression of TERT, c-Myc, and upstream transcription factors of c-Myc were also observed in the MEHP-treated cells. In conclusion, it can be concluded that TERT-mediated telomere dysfunction may contribute to MEHP-induced G0/G1 phase cell cycle arrest and apoptosis in GC-1 cells through the impairment of c-Myc and its upstream transcription factors.

20.
Chem Sci ; 14(3): 604-612, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36741507

ABSTRACT

Visible-light-mediated methods were heavily studied as a useful tool for cysteine-selective bio-conjugation; however, many current methods suffer from bio-incompatible reaction conditions and slow kinetics. To address these challenges, herein, we report a transition metal-free thiol-sulfoxonium ylide photo-click reaction that enables bioconjugation under bio-compatible conditions. The reaction is highly cysteine-selective and generally finished within minutes with naturally occurring riboflavin derivatives as organic photocatalysts. The catalysts and substrates are readily accessible and bench stable and have satisfactory water solubility. As a proof-of-concept study, the reaction was smoothly applied in chemo-proteomic analysis, which provides efficient tools to explore the druggable content of the human proteome.

SELECTION OF CITATIONS
SEARCH DETAIL
...