Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1098228, 2023.
Article in English | MEDLINE | ID: mdl-36865920

ABSTRACT

Cerebral edema (CE) exerts an important effect on brain injury after traumatic brain injury (TBI). Upregulation of transient receptor potential melastatin 4 (TRPM4) in vascular endothelial cells (ECs) results in damage to capillaries and the blood-brain barrier (BBB), which is critical for the development of CE. Many studies have shown that 9-phenanthrol (9-PH) effectively inhibits TRPM4. The current study aimed to investigate the effect of 9-PH on reducing CE after TBI. In this experiment, we observed that 9-PH markedly reduced brain water content, BBB disruption, proliferation of microglia and astrocytes, neutrophil infiltration, neuronal apoptosis and neurobehavioral deficits. At the molecular level, 9-PH significantly inhibited the protein expression of TRPM4 and MMP-9, alleviated the expression of apoptosis-related molecules and inflammatory cytokines, such as Bax, TNF-α and IL-6, near injured tissue, and diminished serum SUR1 and TRPM4 levels. Mechanistically, treatment with 9-PH inhibited activation of the PI3K/AKT/NF-kB signaling pathway, which was reported to be involved in the expression of MMP-9. Taken together, the results of this study indicate that 9-PH effectively reduces CE and alleviates secondary brain injury partly through the following possible mechanisms: ①9-PH inhibits TRPM4-mediated Na + influx and reduces cytotoxic CE; ②9-PH hinders the expression and activity of MMP-9 by inhibiting the TRPM4 channel and decreases disruption of the BBB, thereby preventing vasogenic cerebral edema. ③9-PH reduces further inflammatory and apoptotic damage to tissues.

2.
Front Oncol ; 12: 855434, 2022.
Article in English | MEDLINE | ID: mdl-35719998

ABSTRACT

Background: As a novel form of programmed cell death, necroptosis is related to multiple tumor types and their immune microenvironments. However, its association with glioma has not been clarified. Methods: Necroptosis genes were obtained from the Gene Set Enrichment Analysis (GSEA) database. RNA-seq and clinical data were downloaded from TCGA and CGGA databases. A necroptosis gene signature was constructed based on univariate and multivariate Cox regression analyses. Next, survival analysis, independent prognostic analysis, and nomogram were performed to assess and verify the model. Subsequently, we analyzed the tumor microenvironment (TME) and immune cell infiltration via ESTIMATE and CIBERSORTx algorithms. Finally, the response of glioma patients in the TCGA database to immune checkpoint inhibitor (ICI) therapy was predicted using the Tumor Immune Dysfunction and Exclusion (TIDE) database. Results: Of the seven prognostic necroptosis genes, RIPK1, RIPK3, FAS, and FADD were used to construct the risk signature that accurately predicts the prognosis of glioma patients. Functional enrichment results suggest that necroptosis is correlated with immune response and angiogenesis. Immune analysis revealed that necroptosis can boost inflammatory activity and attract immunosuppressive cell infiltration to form a chronic inflammatory microenvironment, promoting glioma growth. Additionally, glioma patients in the TCGA cohort with high necroptosis gene expression exhibited a better response to ICI therapy predicted by the TIDE algorithm. Conclusion: We constructed a necroptosis gene signature, which has the potential for use as a biomarker for predicting glioma patients' prognosis, revealing the association between necroptosis and the immune microenvironment, and serving as a reference for immune therapy.

3.
Int J Gen Med ; 15: 4753-4769, 2022.
Article in English | MEDLINE | ID: mdl-35571289

ABSTRACT

Background: Pyroptosis is a novel form of cell death that plays a significant role in cancer, while the prognostic values of pyroptosis-related genes in gliomas have not been revealed. Methods: We analyzed the RNA-seq and clinical data of gliomas from the University of California Santa Cruz (UCSC) Xena database to determine differentially expressed pyroptosis-related genes. Based on these genes, a pyroptosis genes signature was constructed after univariate Cox analysis and Lasso Cox analyses. The sensitivity and specificity of pyroptosis genes signature were verified by the Chinese Glioma Genome Atlas (CGGA) dataset. Finally, we explored the association of risk signatures with tumor microenvironment and immune cell infiltration. Results: Of 15 differentially expressed pyroptosis-related genes, three genes of BCL2 associated X (BAX), caspase 3 (CASP3), and caspase 4 (CASP4) were used to construct the risk signature. The effectiveness of risk signature for predicting survival at 1, 3, 5 years was performed by the receiver operating characteristic curve (ROC), and the area under curves (AUC) was 0.739, 0.817, and 0.800, respectively. Functional enrichment results showed signal transduction, cell adhesion, immune response, and inflammatory response were enriched. The immune analysis revealed that pyroptosis had a remarkable effect on the immune microenvironment. Conclusion: In this study, we constructed a pyroptosis-related gene signature, which can serve as a potential biomarker for predicting the survival of glioma patients. Additionally, we suggested that pyroptosis may promote gliomas development by inducing chronic inflammation microenvironment.

4.
Int J Nanomedicine ; 16: 1805-1817, 2021.
Article in English | MEDLINE | ID: mdl-33692623

ABSTRACT

INTRODUCTION: RNA interference is a promising therapy in glioma treatment. However, the application of RNA interference has been limited in glioma therapy by RNA instability and the lack of tumor targeting. Here, we report a novel DNA tetrahedron, which can effectively deliver small interfering RNA to glioma cells and induce apoptosis. METHODS: siRNA, a small interfering RNA that can suppress the expression of survivin in glioma, was loaded into the DNA tetrahedron (TDN). To enhance the ability of active targeting of this nanoparticle, we modified one side of the DNA nanostructure with aptamer as1411 (As-TDN-R), which can selectively recognize the nucleolin in the cytomembrane of tumor cells. The modified nanoparticles were characterized by agarose gel electrophoresis, dynamic light scattering, and transmission electron microscopy. The serum stability was evaluated by agarose gel electrophoresis. Nucleolin was detected by Western blot and immunofluorescence, and targeted cellular uptake was examined by flow cytometry. The TUNEL assay, flow cytometry, and Western Blot were used to detect apoptosis in U87 cells. The gene silencing of survivin was examined by qPCR, Western Blot, and immunofluorescence. RESULTS: As-TDN-R alone showed better stability towards siRNA, indicating that TDN was a good siRNA protector. Compared with TDN alone, there was increased intercellular uptake of As-TDN-R by U87 cells, evidenced by overexpressed nucleolin in glioma cell lines. TUNEL assay, flow cytometry, and Western Blot revealed increased apoptosis in the As-TDN-R group. The downregulation of survivin protein and mRNA expression levels indicated that As-TDN-R effectively silenced the target gene. CONCLUSION: The novel nanoparticle can serve as a good carrier for targeting siRNA delivery in glioma. Further exploration of the DNA nanostructure can greatly promote the application of DNA-based drug systems in glioma.


Subject(s)
DNA/chemistry , Gene Transfer Techniques , Glioma/therapy , Nanostructures/chemistry , RNA, Small Interfering/administration & dosage , Apoptosis/drug effects , Aptamers, Nucleotide/chemistry , Cell Death , Cell Line, Tumor , Cell Survival , Down-Regulation , Endocytosis , Gene Silencing , Glioma/pathology , Human Umbilical Vein Endothelial Cells , Humans , Nanostructures/ultrastructure , Oligodeoxyribonucleotides/chemistry , Phosphoproteins/metabolism , RNA, Small Interfering/genetics , RNA-Binding Proteins/metabolism , Survivin/metabolism , Nucleolin
SELECTION OF CITATIONS
SEARCH DETAIL
...