Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Inorg Chem ; 59(9): 6432-6438, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32319758

ABSTRACT

The first microwave rotational spectra for two structural isomers of methylmanganese pentacarbonyl were measured in the 4-9 GHz range using a pulsed-beam Fourier transform microwave spectrometer. The spectra for the two isomers, a symmetric-top structure and an asymmetric-top acyl isomeric structure, were fit to obtain rotational and centrifugal distortion constants and 55Mn quadrupole coupling parameters. The rotational constants, the manganese (55Mn) nuclear quadrupole coupling constant, the centrifugal distortion constants, and the spin-rotation constant were determined for the symmetric CH3Mn(CO)5 and have the following values: A = B = 793.153(3) MHz, DJ = 0.00040(4) MHz, DJK = 0.0018(2) MHz, Ccc = 0.183(6) MHz, and eQqcc= -87.4(3) MHz. Rotational constants and 55Mn quadruple coupling constants were determined for the isomeric acyl-CH3C(O)Mn(CO)4 and have the following values: A = 839.96(4) MHz, B = 774.20(7) MHz, C = 625.63(1) MHz, and 1.5 eQqaa= 44.9(47) MHz and 0.25(eQqbb - eQqcc) = 11.9(12) MHz. The measured rotational constants from the isomeric acyl-CH3C(O)Mn(CO)4 were compared with various theoretical computations. The calculated rotational constants for the dihapto-acyl and the agostic-acyl structures are reasonably close to the experimental values. We note that the calculated dihapto-acyl structure most closely matches the experimental data, as the calculation for the dihapto structure using the B3LYP functional with the aug-cc-pVDZ basis set closely reproduced the experimental values for A, B, and C.

3.
J Chem Phys ; 150(9): 094305, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30849873

ABSTRACT

An efficient synthesis of formamidinium formate is described. The experimental x-ray structure shows both internal and external H-bonding to surrounding molecules. However, in the gas phase, this compound occurs as a doubly hydrogen bonded dimer between formamidine and formic acid. This doubly hydrogen-bonded structure is quite different from the solid state structure. Microwave spectra were measured in the 6-14 GHz range using a pulsed-beam Fourier transform microwave (MW) spectrometer. The two nonequivalent N-atoms exhibit distinct quadrupole coupling. The rotational, centrifugal distortion, and quadrupole coupling constants determined from the spectra have the following values: A = 5880.05(2), B = 2148.7710(2), C = 1575.23473(13), 1.5 χaa (N1) = 1.715(3), 0.5(χbb-χcc) (N1) = -1.333(4), 1.5 χaa (N2) = 0.381(2), 0.25(χbb-χcc) (N2) = -0.0324(2), and DJ = 0.002145(5) MHz. The experimental inertial defect, Δ = -0.243 amu Å2, is consistent with a planar structure. Accurate and precise rotational constants (A, B, and C), obtained from the MW measurements, were closely reproduced, within 1%-2% of the measured values, with the M11 DFT theoretical calculations. Detailed comparison of the measured and calculated A, B, and C rotational constants confirms the planar doubly hydrogen bonded structure. The calculated nitrogen quadrupole coupling strengths of the monomer are quite different from either of the two nitrogen sites of the dimer. The poor agreement between measured and calculated quadrupole coupling strengths shows that the dimer is not locked in the equilibrium structure but is likely undergoing large amplitude vibrational motion of the hydrogen atoms moving between the N and O atoms involved in the hydrogen bonding.

4.
J Phys Chem A ; 122(6): 1542-1549, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29369618

ABSTRACT

High resolution microwave spectra for the somewhat unstable compound 1-chloroborepin were measured in the 5-10 GHz range using a pulsed beam Fourier transform microwave spectrometer. Transitions were assigned and measured for three isotopologues, which include the most abundant isotopologue, 11B35Cl, and the less abundant 10B35Cl and 11B37Cl isotopologues. The molecular parameters (MHz) determined for the 11B35Cl isotopologue are A = 3490.905(35), B = 1159.38520(79), C = 870.59492(56), 1.5χaa (11B) = -0.220(22), 0.25(χbb - χcc) (11B) = -1.5300(99), 1.5χaa (35Cl) = -54.572(33), and 0.25(χbb - χcc) (35Cl) = 4.7740(79). The inertial defect is calculated to be Δ = -0.174 amu Å2 from the experimental rotational constants, indicating a planar structure with some out of plane vibrational motion. An extended Townes-Dailey analysis was performed on the 11B and 35Cl nuclei to determine the electron occupations in the valence hybridized orbitals using the experimental quadrupole coupling strengths. From the analysis it was determined that Cl is sharing some electron density with the empty p-orbital on B. The B-Cl bond length determined from the data is 1.798(1) Å, and the B-C bond lengths are 1.533(10) Å. The structural parameters and electronic structure properties of 1-chloroborepin are consistent with an aromatic boron-containing molecule.

SELECTION OF CITATIONS
SEARCH DETAIL
...