Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Macromol Biosci ; : e2400050, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810210

ABSTRACT

Traumatic brain injury (TBI) is the primary cause of child mortality and disability worldwide. It can result in severe complications that significantly impact children's quality of life, including post-traumatic epilepsy (PTE). An increasing number of studies suggest that TBI-induced oxidative stress and neuroinflammatory sequelae (especially, inflammation in the hippocampus region) may lead to the development of PTE. Due to the blood-brain barrier (BBB), typical systemic pharmacological therapy for TBI cannot deliver berberine (BBR) to the targeted location in the early stages of the injury, although BBR has strong anti-inflammatory properties. To break through this limitation, a microenvironment-responsive gelatin methacrylate (GM) hydrogel to deliver poly(propylene sulfide)60 (PPS60) and BBR (GM/PB) is developed for regulating neuroinflammatory reactions and removing reactive oxygen species (ROS) in the brain trauma microenvironment through PPS60. In situ injection of the GM/PB hydrogel efficiently bypasses the BBB and is administered directly to the surface of brain tissue. In post-traumatic brain injury models, GM/PB has the potential to mitigate oxidative stress and neuroinflammatory responses, facilitate functional recovery, and lessen seizing. These findings can lead to a new treatment for brain injuries, which minimizes complications and improves the quality of life.

2.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 378-384, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38660902

ABSTRACT

OBJECTIVES: To dynamically observe the changes in hypoxia-inducible factor 1α (HIF-1α) and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in children with traumatic brain injury (TBI) and evaluate their clinical value in predicting the severity and prognosis of pediatric TBI. METHODS: A prospective study included 47 children with moderate to severe TBI from January 2021 to July 2023, categorized into moderate (scores 9-12) and severe (scores 3-8) subgroups based on the Glasgow Coma Scale. A control group consisted of 30 children diagnosed and treated for inguinal hernia during the same period, with no underlying diseases. The levels of HIF-1α, BNIP3, autophagy-related protein Beclin-1, and S100B were compared among groups. The predictive value of HIF-1α, BNIP3, Beclin-1, and S100B for the severity and prognosis of TBI was assessed using receiver operating characteristic (ROC) curves. RESULTS: Serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in the TBI group were higher than those in the control group (P<0.05). Among the TBI patients, the severe subgroup had higher levels of HIF-1α, BNIP3, Beclin-1, and S100B than the moderate subgroup (P<0.05). Correlation analysis showed that the serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were negatively correlated with the Glasgow Coma Scale scores (P<0.05). After 7 days of treatment, serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in both non-surgical and surgical TBI patients decreased compared to before treatment (P<0.05). ROC curve analysis indicated that the areas under the curve for predicting severe TBI based on serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were 0.782, 0.835, 0.872, and 0.880, respectively (P<0.05), and for predicting poor prognosis of TBI were 0.749, 0.775, 0.814, and 0.751, respectively (P<0.05). CONCLUSIONS: Serum levels of HIF-1α, BNIP3, and Beclin-1 are significantly elevated in children with TBI, and their measurement can aid in the clinical assessment of the severity and prognosis of pediatric TBI.


Subject(s)
Beclin-1 , Brain Injuries, Traumatic , Hypoxia-Inducible Factor 1, alpha Subunit , Membrane Proteins , Humans , Male , Female , Brain Injuries, Traumatic/blood , Child , Membrane Proteins/blood , Child, Preschool , Hypoxia-Inducible Factor 1, alpha Subunit/blood , Beclin-1/blood , Prognosis , Proto-Oncogene Proteins/blood , S100 Calcium Binding Protein beta Subunit/blood , Prospective Studies , Infant , Adolescent
3.
Phytother Res ; 37(12): 5803-5820, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632389

ABSTRACT

T-lymphokine-activated killer cell-originated protein kinase (TOPK) is a serine-threonine kinase that is overexpressed in gastric cancer (GC) and promotes tumor progression. Polyphyllin VII (PPVII), a pennogenin isolated from the rhizomes of Paris polyphylla, shows anticancer effects. Here, we explored the antitumor activity and mechanism of PPVII in GC. Ferroptosis was detected by transmission electron microscope, malondialdehyde, and iron determination assays. Autophagy and its upstream signaling pathway were detected by Western blot, and gene alterations. The binding of PPVII and TOPK was examined through microscale thermophoresis and drug affinity responsive target stability assays. An in vivo mouse model was performed to evaluate the therapeutic of PPVII. PPVII inhibits GC by inducing autophagy-mediated ferroptosis. PPVII promotes the degradation of ferritin heavy chain 1, which is responsible for autophagy-mediated ferroptosis. PPVII activates the Unc-51-like autophagy-activating kinase 1 (ULK1) upstream of autophagy. PPVII inhibits the activity of TOPK, thereby weakening the inhibition of downstream ULK1. PPVII stabilizes the dimer of the inactive form of TOPK by direct binding. PPVII inhibits tumor growth without causing obvious toxicity in vivo. Collectively, this study suggests that PPVII is a potential agent for the treatment of GC by targeting TOPK to activate autophagy-mediated ferroptosis.


Subject(s)
Ferroptosis , Stomach Neoplasms , Humans , Animals , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Stomach Neoplasms/drug therapy , Killer Cells, Lymphokine-Activated/metabolism , Autophagy , Cell Line, Tumor
4.
Explor Target Antitumor Ther ; 4(1): 139-156, 2023.
Article in English | MEDLINE | ID: mdl-36937322

ABSTRACT

Medulloblastoma (MB) is the commonest primary malignant brain cancer. The current treatment of MB is usually surgical resection combined with radiotherapy or chemotherapy. Although great progress has been made in the clinical management of MB, tumor metastasis and recurrence are still the main cause of death. Therefore, definitive and timely diagnosis is of great importance for improving therapeutic effects on MB. In 2016, the World Health Organization (WHO) divided MB into four subtypes: wingless-type mouse mammary tumor virus integration site (WNT), sonic hedgehog (SHH), non-WNT/non-SHH group 3, and group 4. Each subtype of MB has a unique profile in copy number variation, DNA alteration, gene transcription, or post-transcriptional/translational modification, all of which are associated with different biological manifestations, clinical features, and prognosis. This article reviewed the research progress of different molecular pathology markers in MB and summarized some targeted drugs against these molecular markers, hoping to stimulate the clinical application of these molecular markers in the classification, diagnosis, and treatment of MB.

5.
Nanomaterials (Basel) ; 12(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893482

ABSTRACT

The morphology, microstructure as well as the orientation of cathodic materials are the key issues when preparing high-performance aqueous zinc-ion batteries (ZIBs). In this paper, binder-free electrode Mn(OH)2 nanowire arrays were facilely synthesized via electrodeposition. The nanowires were aligned vertically on a carbon cloth. The as-prepared Mn(OH)2 nanowire arrays were used as cathode to fabricate rechargeable ZIBs. The vertically aligned configuration is beneficial to electron transport and the free space between the nanowires can provide more ion-diffusion pathways. As a result, Mn(OH)2 nanowire arrays yield a high specific capacitance of 146.3 Ma h g-1 at a current density of 0.5 A g-1. They also demonstrates ultra-high diffusion coefficients of 4.5 × 10-8~1.0 × 10-9 cm2 s-1 during charging and 1.0 × 10-9~2.7 × 10-11 cm-2 s-1 during discharging processes, which are one or two orders of magnitude higher than what is reported in the studies. Furthermore, the rechargeable Zn//Mn(OH)2 battery presents a good capacity retention of 61.1% of the initial value after 400 cycles. This study opens a new avenue to boost the electrochemical kinetics for high-performance aqueous ZIBs.

6.
Biochem Biophys Res Commun ; 513(4): 800-806, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31000197

ABSTRACT

Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) overexpression promotes glioma cell progression. The aim of the current study is to silence IGF2BP1 in glioma cells by the microRNA (miRNA) strategy. The bio-informatic analyses identified that microRNA-4500 (miR-4500) putatively targets 3'-UTR (3'-untranslated region) of IGF2BP1. In A172 cells and primary human glioma cells ectopic overexpression of the wild-type miR-4500 (but not the mutant form) downregulated IGF2BP1 and its target genes (Gli1, IGF2 and c-Myc). Functional studies show that ectopic miR-4500 overexpression inhibited glioma cell growth, survival, proliferation, migration and invasion. Conversely, in A172 cells miR-4500 inhibition, by a lentiviral construct, increased expression of IGF2BP1 and its targets, promoting cell survival, proliferation and migration. Furthermore, IGF2BP1 knockout by the CRISPR/Cas9 method inhibited A172 cell progression. Significantly, miR-4500 overexpression or miR-4500 inhibition was ineffective in IGF2BP1 knockout A172 cells. At last, we show that miR-4500 levels are downregulated in human glioma tissues, correlating with IGF2BP1 upregulation. Together, we conclude that miR-4500 inhibits human glioma cell progression by targeting IGF2BP1.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Disease Progression , Glioma/genetics , Glioma/pathology , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Base Sequence , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Neoplasm Invasiveness , RNA-Binding Proteins/genetics , Up-Regulation/genetics
7.
Oncol Rep ; 37(5): 2565-2574, 2017 May.
Article in English | MEDLINE | ID: mdl-28405688

ABSTRACT

Νeuronal precursor cell expressed and developmentally downregulated protein (Nedd4-1) is an E3 ubiquitin ligase with critical roles in the pathogenesis of cancer. Herein, we demonstrated that Nedd4-1 protein was upregulated in glioma tissues vs. that in non-cancerous tissues by western blotting and immunohistochemistry. Scratch migration and Transwell chamber assays indicated that downregulation of Nedd4-1 significantly reduced the migration and invasion of the glioma cell lines U251 and U87. Conversely, overexpression of Nedd4-1 obviously enhanced the migratory and invasive capacities in both cell lines. To investigate the role of Nedd4-1 and the intracellular pathways involved, we performed pull-down and co-immunoprecipitation assays, and recognized that Nedd4-1, TNIK and Rap2a formed a complex. Moreover, Nedd4-1 selectively ubiquitinated its specific substrates, the wild-type Rap2a (WT-Rap2a) and dominant-active Rap2a (DA-Rap2a) rather than the dominant-negative Rap2a (DN-Rap2a) in the U251 cells. Subsequently, we demonstrated that Rap2a was robustly ubiquitinated by Nedd4-1 along with the K63-linked, but not the K48-linked ubiquitin chain, which significantly inhibited GTP-Rap2a activity by GST-RalGDS pull-down assay. To further verify whether the ubiquitination of Rap2a by Nedd4-1 regulated the migration and invasion of glioma cells, Nedd4-1, HA-tagged ubiquitin and its mutants as well as WT-Rap2a were co-transfected in the U251 and U87 cell lines. The results confirmed that Nedd4-1 inhibited GTP-Rap2a activity, and promoted the migration and invasion of glioma cells. In brief, our findings demonstrated the important role of Nedd4-1 in regulating the migration and invasion of glioma cells via the Nedd4-1/Rap2a pathway, which may qualify Nedd4-1 as a viable therapeutic target for glioma.


Subject(s)
Brain Neoplasms/pathology , Endosomal Sorting Complexes Required for Transport/metabolism , Glioma/pathology , Ubiquitin-Protein Ligases/metabolism , rap GTP-Binding Proteins/metabolism , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Endosomal Sorting Complexes Required for Transport/genetics , Glioma/metabolism , Humans , Nedd4 Ubiquitin Protein Ligases , Ubiquitin-Protein Ligases/genetics , Ubiquitination , rap GTP-Binding Proteins/genetics
8.
Environ Sci Pollut Res Int ; 23(2): 1254-64, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26358207

ABSTRACT

Soil salinity is a stringent abiotic constraint limiting crop growth and productivity. The present study was carried out to appraise the role of xylo-oligosaccharides (XOSs) in improving the salinity tolerance of Chinese cabbage. Salinity stress (0.5% NaCl solution) and four levels (0, 40, 80, 120 mg L(-1)) of XOSs were imposed on 20-day-old plants cultured under controlled conditions. Salinity stress decreased the aboveground fresh biomass, photosynthesis, transpiration rate, stomatal conductance, internal CO2 concentration, water use efficiency, and chlorophyll contents but increased the stomatal limitation value of Chinese cabbage compared with control. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Chinese cabbage were significantly alleviated by the addition of XOSs under salinity stress. Under salinity stress, application of XOSs significantly enhanced the activities of enzymatic (superoxide dismutase, peroxidase, catalase) and non-enzymatic (ascorbate, carotene) antioxidants and reduced the malondialdehyde content in the leaves of Chinese cabbage. The XOS-applied plants under salinity stress also recorded higher soluble sugars, proline, and soluble protein content in their leaves. Exposure of salinity stress increased the ratio of Na(+)/K(+), Na(+)/Ca(2+), and Na(+)/Mg(2+) in shoot as well as root of Chinese cabbage, however, XOS application significantly reduced these ratios particularly in shoot. Lower levels of XOSs (40 or 80 mg L(-1)) were more effective for most of the studied attributes. The greater salinity tolerance and better growth in these treatments were related with enhanced antioxidative defense system, reduced lipid peroxidation, increased osmolyte accumulation, and maintenance of ionic balance.


Subject(s)
Brassica/drug effects , Brassica/metabolism , Glucuronates/pharmacology , Oligosaccharides/pharmacology , Sodium Chloride/metabolism , Antioxidants/metabolism , Brassica/growth & development , Catalase/metabolism , Chlorophyll/metabolism , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Peroxidases/metabolism , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Proline/metabolism , Salt Tolerance , Sodium Chloride/analysis , Superoxide Dismutase/metabolism
9.
J Neurooncol ; 124(3): 357-64, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26088461

ABSTRACT

We previously reported that loss of Nrdp1 contributes to human glioma progression by reducing apoptosis. However, the role of Nrdp1 in glioma migration and invasion has not been investigated. Here, we report that ErbB3, a substrate of Nrdp1, is undetectable in normal brain tissues and grade II/III glioma tissues, but is abundant in a certain percentage of grade IV glioma tissues and is associated with the loss of Nrdp1. This suggests that Nrdp1 may be involved in glioma migration and invasion by regulating ErbB3. Thus, the role of Nrdp1/ErbB3 signaling in glioma cell migration and invasion was investigated using Nrdp1 loss- and gain-of-function. The results show that down-regulation of Nrdp1 by use of short hairpin RNA promoted glioma cell migration and invasion. In contrast, overexpression of Nrdp1 significantly inhibited glioma cell migration and invasion. Further investigation on molecular targets revealed that Nrdp1 decreased the level of ErbB3, which resulted in decreasing p-AKT thereby reducing cytoplasmic p27(Kip1). Taken together, these findings suggest that Nrdp1-mediated ErbB3 degradation suppresses glioma migration and invasion and that loss of Nrdp1 may amplify ErbB3 signaling to contribute to glioma migration and invasion. These findings suggest that Nrdp1 may be a target for glioma therapy.


Subject(s)
Brain Neoplasms/pathology , Cell Movement/physiology , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Glioma/pathology , Receptor, ErbB-3/metabolism , Ubiquitin-Protein Ligases/genetics , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Neoplasm Invasiveness/genetics , Receptor, ErbB-3/genetics , Retroviridae/genetics , Transfection , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...