Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosurg ; 140(3): 657-664, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37773878

ABSTRACT

OBJECTIVE: The effect of subthalamic nucleus (STN) deep brain stimulation (DBS) on urinary dysfunction and constipation in Parkinson's disease (PD) is variable. This study aimed to identify potential surgical and nonsurgical variables predictive of these outcomes. METHODS: The authors used the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part I to assess urinary dysfunction (item 10) and constipation (item 11) preoperatively and at 6-12 months postoperatively. A multiple linear regression model was used to investigate the impact of global cerebral atrophy (GCA) and active electrode contact location on the urinary dysfunction and constipation follow-up scores, controlling for age, disease duration, baseline score, motor improvement, and levodopa-equivalent dose changes. An electric field model was applied to localize the maximal-effect sites for constipation and urinary dysfunction compared with those for motor improvement. RESULTS: Among 74 patients, 23 improved, 28 deteriorated, and 23 remained unchanged for urinary dysfunction; 25 improved, 15 deteriorated, and 34 remained unchanged for constipation. GCA score and age significantly predicted urinary dysfunction follow-up score (R2 = 0.36, p < 0.001). Increased GCA and age were independently associated with worsening urinary symptoms. Disease duration, baseline constipation score, and anterior active electrode contacts in both hemispheres were significant predictors of constipation follow-up score (R2 = 0.31, p < 0.001). Higher baseline constipation score and disease duration were associated with worsening constipation; anterior active contact location was associated with improvement in constipation. CONCLUSIONS: Anterior active contact location was associated with improvement in constipation in PD patients after STN DBS. PD patients with greater GCA scores before surgery were more likely to experience urinary deterioration after DBS.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/complications , Parkinson Disease/therapy , Treatment Outcome , Deep Brain Stimulation/adverse effects , Constipation/therapy , Constipation/complications
2.
Front Pain Res (Lausanne) ; 4: 1240379, 2023.
Article in English | MEDLINE | ID: mdl-37663307

ABSTRACT

Introduction: Inconsistent effects of subthalamic deep brain stimulation (STN DBS) on pain, a common non-motor symptom of Parkinson's disease (PD), may be due to variations in active contact location relative to some pain-reducing locus of stimulation. This study models and compares the loci of maximal effect for pain reduction and motor improvement in STN DBS. Methods: We measured Movement Disorder Society Unified PD Rating Scale (MDS-UPDRS) Part I pain score (item-9), and MDS-UPDRS Part III motor score, preoperatively and 6-12 months after STN DBS. An ordinary least-squares regression model was used to examine active contact location as a predictor of follow-up pain score while controlling for baseline pain, age, dopaminergic medication, and motor improvement. An atlas-independent isotropic electric field model was applied to distinguish sites of maximally effective stimulation for pain and motor improvement. Results: In 74 PD patients, mean pain score significantly improved after STN DBS (p = 0.01). In a regression model, more dorsal active contact location was the only significant predictor of pain improvement (R2 = 0.17, p = 0.03). The stimulation locus for maximal pain improvement was lateral, anterior, and dorsal to that for maximal motor improvement. Conclusion: STN stimulation, dorsal to the site of optimal motor improvement, improves pain. This region contains the zona incerta, which is known to modulate pain in humans, and may explain this observation.

3.
Parkinsonism Relat Disord ; 94: 84-88, 2022 01.
Article in English | MEDLINE | ID: mdl-34896928

ABSTRACT

INTRODUCTION: Subthalamic deep brain stimulation (STN DBS) may have differential effects on cardinal motor signs of Parkinson's disease (PD) in the upper and lower extremities. In addition, sites of maximally effective DBS for each sign and extremity may be distinct. Our study seeks to elucidate these structure-function relationships. METHODS: We applied an ordinary least squares linear regression model to measure motor effects of STN DBS on upper (UE) and lower (LE) extremity tremor, rigidity, and bradykinesia. We then applied an atlas-independent electrical-field model to identify sites of maximally effective stimulation for each sign and each extremity. Distances between sites and statistical power to resolve differences were calculated. RESULTS: In our study population (n = 78 patients), STN DBS improved all cardinal motor signs (ß = 0.64, p < .05). Improvement magnitudes were tremor > rigidity > bradykinesia. Effects of STN DBS on UE versus LE signs were statistically equal for tremor and bradykinesia, but greater for UE rigidity than LE rigidity (ß = 0.19, p < .05). UE maximal-effect loci were lateral, anterior, and dorsal to LE loci, but were not statistically resolved, despite sufficient statistical power to resolve differences of ≤0.48 mm (p < .05) between maximally effective loci of stimulation. CONCLUSION: STN DBS produces differential effects on UE and LE rigidity, but not for tremor or bradykinesia. This finding is not explained by distinct UE and LE loci of maximally effective stimulation. Instead, we hypothesize that downstream effects of STN DBS on motor networks and limb biomechanics are responsible for observed differences in UE and LE responses.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Hypokinesia/etiology , Hypokinesia/therapy , Lower Extremity , Parkinson Disease/therapy , Treatment Outcome , Tremor
SELECTION OF CITATIONS
SEARCH DETAIL
...