Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Water Res ; 256: 121573, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608618

ABSTRACT

Sulfidated zero valent iron (ZVI) is a popular material for the reductive degradation of halogenated organic pollutants. Simple and economic synthesis of this material is highly demanded. In this study, sulfidated micro/nanostructured ZVI (MNZVI) particles were prepared by simply heating MNZVI particles and sulfur elements (S0) in pure water (50℃). The iron oxides on the surface of MNZVI particles were conducive to sulfidation reaction, indicating the formation of iron-sulphide minerals (FeSx) on the surface of MNZVI particles might not be from the direct reaction of Fe0 with S0 (Fe0 and S0 acted as reductant and oxidant, respectively). As an important reductant, hydrogen atom (H•) can be generated from the reduction of H+ by MNZVI particles and participate in the formation of FeSx. Quenching experiment and cyclic voltammetry analysis proved the existence of H• on the surface of MNZVI particles. DFT calculation found that the potential barrier of H•/S0 and Fe0/S0 were 1.91 and 7.24 eV, respectively, indicating that S0 would preferentially react with H• instead of Fe0. The formed H• can quickly react with S0 to generate hydrogen sulfide (H2S), which can further react with iron oxides such as α-Fe2O3 on the surface of MNZVI particles to form FeSx. In addition, the H2 partial pressure in water significantly affected the amount of H• generated, thereby affecting the sulfidation efficiency. For TCE degradation, as the sulfur loading of sulfidated MNZVI particles increased, the contribution of H• significantly decreased while the contribution of direct electron transfer increased. This study provided new insights into the synthesis mechanism of sulfidated ZVI in water.


Subject(s)
Hydrogen , Iron , Hydrogen/chemistry , Iron/chemistry , Oxidation-Reduction
2.
Environ Sci Technol ; 58(17): 7403-7414, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38627988

ABSTRACT

Photochemically generated reactive oxygen species (ROS) are widespread on the earth's surface under sunlight irradiation. However, the nonphotochemical ROS generation in surface water (e.g., paddy overlying water) has been largely neglected. This work elucidated the drivers of nonphotochemical ROS generation and its spatial distribution in undisturbed paddy overlying water, by combining ROS imaging technology with in situ ROS monitoring. It was found that H2O2 concentrations formed in three paddy overlying waters could reach 0.03-16.9 µM, and the ROS profiles exhibited spatial heterogeneity. The O2 planar-optode indicated that redox interfaces were not always generated at the soil-water interface but also possibly in the water layer, depending on the soil properties. The formed redox interface facilitated a rapid turnover of reducing and oxidizing substances, creating an ideal environment for the generation of ROS. Additionally, the electron-donating capacities of water at soil-water interfaces increased by 4.5-8.4 times compared to that of the top water layers. Importantly, field investigation results confirmed that sustainable •OH generation through nonphotochemical pathways constituted of a significant proportion of total daily production (>50%), suggesting a comparable or even greater role than photochemical ROS generation. In summary, the nonphotochemical ROS generation process reported in this study greatly enhances the understanding of natural ROS production processes in paddy soils.


Subject(s)
Reactive Oxygen Species , Soil , Water , Reactive Oxygen Species/metabolism , Soil/chemistry , Oxidation-Reduction , Hydrogen Peroxide
3.
Environ Sci Technol ; 57(43): 16340-16347, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37856081

ABSTRACT

Frequent cycles of flooding and drainage in paddy soils lead to the reductive dissolution of iron (Fe) minerals and the reoxidation of Fe(II) species, all while generating a robust and consistent output of reactive oxygen species (ROS). In this study, we present a comprehensive assessment of the temporal and spatial variations in Fe species and ROS during the flooding-drainage process in a representative paddy soil. Our laboratory column experiments showed that a decrease in dissolved O2 concentration led to rapid Fe reduction below the water-soil interface, and aqueous Fe(II) was transformed into solid Fe(II) phases over an extended flooding time. As a result, the •OH production capacity of liquid phases was reduced while that of solid phases improved. The •OH production capacity of solid phases increased from 227-271 µmol kg-1 (within 1-11 cm depth) to 500-577 to 499-902 µmol kg-1 after 50 day, 3 month, and 1 year incubation, respectively. During drainage, dynamic •OH production was triggered by O2 consumption and Fe(II) oxidation. ROS-trapping film and in situ capture revealed that the soil surface was the active zone for intense H2O2 and •OH production, while limited ROS production was observed in the deeper soil layers (>5 cm) due to the limited oxygen penetration. These findings provide more insights into the complex interplay between dynamic Fe cycling and ROS production in the redox transition zones of paddy fields.


Subject(s)
Oryza , Soil Pollutants , Soil , Hydroxyl Radical , Reactive Oxygen Species , Hydrogen Peroxide , Oxidation-Reduction , Water , Ferrous Compounds
4.
J Hazard Mater ; 460: 132402, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37660624

ABSTRACT

The addition of a secondary metal (such as Cu, Co, Ni and Pd) to form iron-based bimetallic particles could enhance the reactivity of zero valent iron (ZVI). This study proposed a new synthesis method for preparing Cu-Fe bimetals (Cu-Febm (CuSO4)) by ball milling mZVI and CuSO4. During ball-milling process, 40% of Cu2+ can be reduced to Cu0, which formed galvanic couple with Fe0 in a way of Fe/Cu alloy structure. Part Cu2+ was only reduced to Cu+ (corresponding to Cu2O), while 29% of SO42- was reduced to Sx2- (corresponding to FeSx). The appearance of Cu2O was not conducive to the activity of Cu-Febm (CuSO4) particles, the formation of Fe0/FeSx structure compensated for the partial loss of Fe/Cu alloy. H•abs was identified as the main active species for TCE degradation by Cu-Febm (CuSO4) bimetals. The Cu-Febm (CuSO4) bimetals has great potential for the removal of chlorinated hydrocarbons in water.

5.
Water Res ; 245: 120557, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37703753

ABSTRACT

Alcohols are commonly used as eluents for the regeneration of per/poly-fluoroalkyl substances (PFASs) adsorbents, but their potential effects on the subsequent treatment of these eluates have not been fully explored. This work investigated the effect of alcohols on perfluorooctanoic acid (PFOA) degradation by persulfate (PS) based advanced oxidation processes. The results showed that ethanol significantly promoted PFOA degradation in thermal/PS system. Under anoxic conditions, 25.5±1.4% or 91.2±1.6% of PFOA was degraded within 48 h in the absence or presence of ethanol. Electron paramagnetic resonance (EPR) detection, free radical quenching experiments, and chemical probe studies clearly demonstrated that the sulfate radicals (SO4•-) generated from PS activation would react with ethanol to form alcohol radicals, which could efficiently degrade PFOA. The transformation pathways of PFOA were proposed based on degradation products analysis and density function theory (DFT) calculation. The reaction between SO4•- and other alcohols could also induce the formation of alcohol radicals and facilitate to the degradation of PFOA. This work represents the positive roles of alcohols in the degradation of PFASs, providing new insights into developing simple and efficient treatments for PFASs eluate or PFAS-contaminated water.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Fluorocarbons/chemistry , Caprylates/chemistry , Ethanol
6.
J Hazard Mater ; 457: 131799, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37302186

ABSTRACT

Recently, hydroxyl radical (•OH) production during soil redox fluctuations has been increasingly reported, but the low efficiency of contaminant degradation is the barrier for engineering remediation. The widely distributed low-molecular-weight organic acids (LMWOAs) might greatly enhance •OH production due to their strong interactions with Fe(II) species, but it was less investigated. Herein, we found that LMWOAs amendment (i.e., oxalic acid (OA) and citric acid (CA)) significantly enhanced •OH production by 1.2 -19.5 times during oxygenation of anoxic paddy slurries. Compared with OA and acetic acid (AA) (78.4 -110.3 µM), 0.5 mM CA showed the highest •OH accumulation (140.2 µM) due to the elevated electron utilization efficiency derived from its strongest capacity for complexation. Besides, increasing CA concentrations (within 6.25 mM) dramatically enhanced the •OH production and imidacloprid (IMI) degradation (increased by 48.6%), and further decreased due to the extensive competition from excess CA. Compared to 0.5 mM CA, the synergistic effects of acidification and complexation induced by 6.25 mM CA rendered more formation of exchangeable Fe(II) that easily coordinated with CA, and thus significantly enhanced its oxygenation. This study proposed promising strategies for regulating natural attenuation of contaminants using LMWOAs in agricultural fields, especially soils with frequent occurrence of redox fluctuations.

7.
J Hazard Mater ; 445: 130477, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36493646

ABSTRACT

Pyrogenic carbon-mediated arsenite (As(III)) oxidation shows great potential as a prerequisite for the efficient removal of arsenic in groundwater. Herein, the critical role of N-containing functional groups in low and high-temperature prepared pyrogenic carbons for mediating As(III) oxidation was systemically explored from an electrochemistry perspective. The pyrogenic carbon electron donating capacity and area-normalized specific capacitance were the key parameters explained the As(III) oxidation kinetics mediated by low electrical conductive 500 °C biomass-derived pyrogenic carbons (N contents of 0.36-7.72 wt%, R2 = 0.87, p < 0.001) and high electrical conductive 800 °C pyrogenic carbons (N contents of 1.00-8.00 wt%, R2 = 0.99, p < 0.001), respectively. The production of H2O2 from the reaction between electron donating phenol groups or semiquinone radicals and oxygen, and the direct electron transfer between semiquinone radicals and As(III) contributed to these pyrogenic carbons mediated As(III) oxidation. While the electron accepting quinone, pyridinic-N, and pyrrolic-N groups did not significantly contribute to the 500 °C pyrogenic carbons mediated As(III) oxidation, the direct electron conduction by these functional groups was responsible for the facilitated As(III) oxidation by the 800 °C pyrogenic carbons. Furthermore, the pyridinic-N and pyrrolic-N groups showed higher electron conduction efficiency than that of the quinone groups. The findings help to develop robust pyrogenic carbons for As(III) contaminated groundwater treatment.


Subject(s)
Arsenites , Carbon , Temperature , Hydrogen Peroxide , Pyrolysis , Oxidation-Reduction , Quinones/chemistry
8.
J Hazard Mater ; 443(Pt A): 130194, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36270192

ABSTRACT

The performance of sulfidated zero valent iron (ZVI) for the degradation of chlorinated hydrocarbons under aerobic conditions remains unclear. In this study, sulfidated microscale ZVI (S-mZVI) was prepared for 1,1,2,2-tetrachloroethane (TeCA) degradation under aerobic conditions. Compared with mZVI, S-mZVI showed excellent passivation resistance during the degradation of TeCA and its hydrolysis/reduction products. This was probably because the existence of FeSx shell (FeS/FeS2/FeSn) protected the internal ZVI core from passivation. Though the outer layer of FeSx shell could be oxidized to FeSn and Fe2(SO4)3 as the reaction proceeded, the inner layer remained stable, which maintained the fast electron transfer capability of S-mZVI. The high temperature could enhance the degradation of TeCA, without compromising the anti-passivation and reusability of S-mZVI. Even after the fifth cycle, S-mZVI could still efficiently degrade 90% of TeCA within 24 h. Furthermore, it was found that the degradation of TeCA and its reduction products (e.g., dichloroethylene (DCE)) by S-mZVI relied on direct electron transfer and hydrogen radical (H•), respectively, which might explain the lower levels of toxic DCE in the S-mZVI system. This study provides valuable information for the practical application of S-mZVI in the treatment of wastewater containing halogenated hydrocarbons under ambient conditions.


Subject(s)
Hydrocarbons, Chlorinated , Water Pollutants, Chemical , Iron , Water Pollutants, Chemical/analysis
9.
Eco Environ Health ; 2(4): 227-234, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38435352

ABSTRACT

Both biotic and abiotic mechanisms play a role in soil CO2 emission processes. However, abiotically mediated CO2 emission and the role of reactive oxygen species are still poorly understood in paddy soil. This study revealed that •OH promoted CO2 emission in paddy soil slurries during short-term oxidation (4 h). •OH generation was highly hinged on active Fe(II) content, and the •OH contribution to CO2 efflux was 10%-33% in topsoil and 40%-77% in deep-soil slurries. Net CO2 efflux was higher in topsoil slurries, which contained more dissolved organic carbon (DOC). CO2 efflux correlated well with DOC contents, suggesting the critical role of DOC. Microbial mechanisms contributed 9%-45% to CO2 production, as estimated by γ-ray sterilization experiments in the short-term reoxidation process. Solid-aqueous separation experiments showed a significant reduction in net CO2 efflux across all soil slurries after the removal of the original aqueous phase, indicating that the water phase was the main source of CO2 emission (>50%). Besides, C emission was greatly affected by pH fluctuation in acidic soil but not in neutral/alkaline soils. Fourier transform ion cyclotron resonance mass spectrometry and excitation-emission matrix results indicated that recalcitrant and macromolecular dissolved organic matter (DOM) components were more easily removed or attacked by •OH. The decrease in DOM content during the short-term reoxidation was the combined result of •OH oxidation, co-precipitation, and soil organic matter release. This study emphasizes the significance of the generally overlooked nonmicrobial mechanisms in promoting CO2 emission in the global C cycle, and the critical influence of the aqueous phase on C loss in paddy environments.

10.
J Hazard Mater ; 438: 129571, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35999732

ABSTRACT

Alkali activation is the most commonly used activation method for persulfate (PS) in in-situ remediation. However, the role of alkali in pollutant degradation is still elusive, limiting the optimization of relevant remediation strategies. In this study, we found that chlorinated alkanes (e.g., tetrachloroethane (TeCA)) could be efficiently degraded by thermal-alkali activation of PS. The main role of alkali was not activating PS but hydrolyzing the chlorinated alkanes, which was evidenced by the immediate conversion of TeCA into trichloroethylene (TCE) with NaOH and PS or with sole NaOH solution. Electron paramagnetic resonance analysis also showed that with a high NaOH/PS molar ratio (4:1) the intensity of oxidative radicals decreased, implying that high levels of alkali did not favor the formation of free radicals. Interestingly, better degradation of TeCA and its product TCE was observed by the combination of alkaline hydrolysis and thermal activation of PS (where alkali was added 6 h before PS rather than simultaneously) in comparison to thermal-alkali activation of PS. This study provides new insights into the remediation of chlorinated alkane-contaminated soils by in-situ chemical oxidation.


Subject(s)
Trichloroethylene , Water Pollutants, Chemical , Alkalies , Hydrolysis , Oxidation-Reduction , Sodium Hydroxide/analysis , Soil , Sulfates/analysis , Water Pollutants, Chemical/analysis
11.
Sci Total Environ ; 838(Pt 3): 156401, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35654200

ABSTRACT

Silver is an antimicrobial agent that is used extensively in consumer products, such as fabrics and humidifiers. Silver ion (Ag+) uptake in bacteria represents a crucial phase of antimicrobial activity. However, the uptake mechanism of Ag+ in bacteria remains largely unknown. The genus Shewanella drives many geochemical processes of nutrients and pollutants in soils. In the present study, Ag+ uptake by Shewanella oneidensis MR-1 was first investigated in a laboratory in defined anaerobic, oligotrophic, and inorganic media with or without cations (potassium ions [K+], magnesium ions [Mg2+], and zinc ions [Zn2+]). Our results revealed variations in antimicrobial activity of Ag+ in the presence of Mg2+ and Zn2+. First, Mg2+ significantly decreased antimicrobial activity of Ag+ in S. oneidensis MR-1 by inhibiting cellular Ag+ uptake when compared with K+. The results were consistent with that of Co2+ (Mg2+ channel blocker) decreased Ag+ uptake by S. oneidensis MR-1. Moreover, Mg2+ promoted riboflavin secretion and facilitated the formation of metallic Ag nanoparticles on bacterial surfaces, which was beneficial for extracellular electron transfer and consequently reduced antibacterial activity of Ag+. Second, Zn2+ increased the antimicrobial activity of Ag+ in S. oneidensis MR-1, although the effect on Ag+ uptake was minimal. A synergistic interaction between Zn2+ and Ag+ led to an increase in dead cells and decreased ferrihydrite reduction capacity. The findings suggest that Mg2+ could reduce the environmental risk of Ag+ to soil bacteria, while Zn2+ should be of particular concern due to its synergistic antimicrobial effect on bacteria.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Shewanella , Cations , Silver/pharmacology
12.
J Hazard Mater ; 434: 128861, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35405609

ABSTRACT

Many studies have examined the redox behavior of ferrous ions (Fe(II)) sorbed to mineral surfaces. However, the associated hydroxyl radical (•OH) formation during Fe(II) oxidation by O2 was rarely investigated at circumneutral pH. Therefore, we examined •OH formation during oxygenation of adsorbed Fe(II) (Fe(II)sorbed) on common minerals. Results showed that 16.7 ± 0.4-25.6 ± 0.3 µM of •OH was produced in Fe(II) and α/γ-Al2O3 systems after oxidation of 24 h, much more than in systems with dissolved Fe(II) (Fe2+aq) alone (10.3 ± 0.1 µM). However, •OH production in Fe(II) and α-FeOOH/α-Fe2O3 systems (6.9 ± 0.1-8.3 ± 0.1 µM) slightly decreased compared to Fe2+aq only. Further analyses showed that enhanced oxidation of Fe(II)sorbed was responsible for the increased •OH production in the Fe(II)/Al2O3 systems. In comparison, less Fe(II) was oxidized in the α-FeOOH/α-Fe2O3 systems, which was probably ascribed to the quick electron-transfer between Fe(II)sorbed and Fe(III) lattice due to their semiconductor properties and induced formation of high-crystalline Fe(II) phases that hindered Fe(II) oxidation and •OH formation. The types of minerals and solution pH strongly affected Fe(II) oxidation and •OH production, which consequently impacted phenol degradation. This study highlights that the properties of minerals exert great impacts on surface-Fe(II) oxidation and •OH production during water/soil redox fluctuations.


Subject(s)
Hydroxyl Radical , Iron , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Hydroxyl Radical/chemistry , Iron/chemistry , Minerals , Oxidation-Reduction , Oxygen
13.
Environ Sci Technol ; 56(4): 2366-2377, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35107264

ABSTRACT

Silver ions (Ag+) directly emitted from industrial sources or released from manufactured Ag nanoparticles (AgNPs) in biosolid-amended soils have raised concern about the risk to ecosystems. However, our knowledge of Ag+ toxicity, internalization, and transformation mechanisms to bacteria is still insufficient. Here, we combine the advanced technologies of hyperspectral imaging (HSI) and single-particle inductively coupled plasma mass spectrometry to visualize the potential formed AgNPs inside the bacteria and evaluate the contributions of biological and non-biological processes in the uptake and transformation of Ag+ by Shewanella oneidensis MR-1. The results showed a dose-dependent toxicity of Ag+ to S. oneidensis MR-1 in the ferrihydrite bioreduction process, which was primarily induced by the actively internalized Ag. Moreover, both HSI and cross-section high-resolution transmission electron microscopy results confirmed that Ag inside the bacteria existed in the form of particulate. The Ag mass distribution in and around live and inactivated cells demonstrated that the uptake and transformation of Ag+ by S. oneidensis MR-1 were mainly via biological process. The bioaccumulation of Ag+ may be lethal to bacteria. A better understanding of the uptake and transformation of Ag+ in bacteria is central to predict and monitor the key factors that control Ag partitioning dynamics at the biointerface, which is critical to develop practical risk assessment and mitigation strategies.


Subject(s)
Metal Nanoparticles , Shewanella , Ecosystem , Metal Nanoparticles/chemistry , Silver/chemistry
14.
Sci Total Environ ; 822: 153536, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35104530

ABSTRACT

Activated carbon (AC) is widely used in pollutant removal, due to its adsorption capacity, conductivity and catalytic performance. However, few studies focus on the redox activity of AC and its role in pollutant transformation. In this study, we found that AC could efficiently mediate the oxidation of As(III) and the process of As(III) oxidation was pH and oxygen concentration dependent. In general, the presence of O2 promoted As(III) oxidation at pH 3.0-9.5. Acidic and alkaline conditions favored As(III) oxidation regardless of whether there was oxygen, but the mechanisms involved were quite different when there was oxygen. At pH 3.0, reactive species (H2O2 and ·OH) were generated and accounted for As(III) oxidation; at pH 9.5, As(III) was directly oxidized by O2 (electron transfer from As(III) to O2 mediated by carbon matrix) under aerobic conditions. Pre-oxidation and cyclic experiments results indicated the ability of AC to oxidize As(III) at pH 9.5 was sustainable and recyclable. This study provided a new insight in pollutant oxidation by AC in the environment.


Subject(s)
Arsenic , Charcoal , Adsorption , Catalysis , Hydrogen Peroxide , Oxidation-Reduction
15.
J Hazard Mater ; 427: 127944, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34865900

ABSTRACT

Microplastics are emerging contaminants that are increasingly detected in soil environment, but their impact on soil microbiota and related biogeochemical processes remains poorly understood. In particular, the mechanisms involved (e.g., the role of chemical additives) are still elusive. In this study, we found that plasticizer-containing polyvinyl chloride (PVC) microplastics at 0.5% (w/w) significantly increased soil NH4+-N content and decreased NO3--N content by up to 91%, and shaped soil microbiota into a microbial system with more nitrogen-fixing microorganisms (as indicated by nifDHK gene abundance), urea decomposers (ureABC genes and urease activity) and nitrate reducers (nasA, NR, NIT-6 and napAB genes), and less nitrifiers (amoC gene and potential nitrification rate). Exposure to plasticizer alone had a similar effect on soil nitrogen parameters but microplastics of pure PVC polymer (either granule or film) had little effect over 60 days, indicating that phthalate plasticizer released from microplastics was the main driver of effects observed. Furthermore, a direct link between phthalate plasticizer, microbial taxonomic changes and altered nitrogen metabolism was established by the isolation of phthalate-degrading bacteria involved in nitrogen cycling. This study highlights the importance of chemical additives in determining the interplay of microplastics with microbes and nutrient cycling, which needs to be considered in future studies.


Subject(s)
Microbiota , Microplastics , Nitrogen , Phthalic Acids , Plasticizers , Plastics , Soil , Soil Microbiology
16.
Chemosphere ; 286(Pt 1): 131565, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34280832

ABSTRACT

Hydroxyl radical (•OH) plays a critical role in driving organic pollutants degradation during redox fluctuations. Such processes have been frequently investigated in sedimentary environments, but rarely referred to the agricultural fields, such as paddy soils with frequent occurrence of redox fluctuations. Our findings demonstrated that extensive •OH (40.3-1061.4 µmol kg-1) was produced during oxygenation of anoxic paddy slurries under circumstance conditions. Wet chemical sequential extractions, Mössbauer spectra, and X-ray photoelectron spectroscopy characterizations collectively corroborated that 0.5 M HCl-extracted Fe(II) (i.e., surface-bound Fe and Fe in low-crystalline minerals) contributed to more •OH production than aqueous Fe2+. The produced •OH can efficiently induce the oxidative transformation of organic carbon and the degradation of imidacloprid (IMP), which in turn produced the by-products, such as IMP-urea, IMP-olefin, and 6-chloronicontinic acid, via •OH-attacking mechanisms. Quenching experiments showed that hydrogen peroxide (H2O2) was the important intermediate for •OH formation via Haber-Weiss mechanisms during oxygenation processes. These findings indicate that abundant •OH can be produced during the redox fluctuations of paddy soil, which might be of great significance to predict the removal of organic contaminants and the mineralization of organic carbon in paddy fields.


Subject(s)
Hydroxyl Radical , Soil , Hydrogen Peroxide , Neonicotinoids , Nitro Compounds , Oxidation-Reduction
17.
Sci Total Environ ; 816: 151667, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34793785

ABSTRACT

The iron (Fe) phases have been widely proposed to preserve organic carbon (OC) via adsorption or coprecipitation pathways, however, such role of Fe phases might be largely reversed under redox-fluctuation conditions, especially for Fe(II) minerals-protected OC. In this study, we synthesized the Fe(II)-OC associations via adsorption and coprecipitation using FeCO3 and three types of low-molecular-weight organic compounds (LMWOCs) at different C/Fe molar ratios, and investigated the OC mineralization induced by hydroxyl radicals (OH) during oxygenation processes. Abundant OH can be produced upon oxygenation of FeCO3-LMWOCs associations within 96 h, giving values of 28.49-151.36 µM in adsorption and 12.63-76.41 µM in coprecipitation treatments depended on types of LMWOCs and C/Fe molar ratios. Fe(II) species in coprecipitates with hydroquinone (HQ) mainly transformed into Goethite-like phases after oxygenation, while adsorption samples induced more formation of lower-crystalline Fe phase (e.g., ferrihydrite). The surface-Fe(II) was the primary electron donors to O2, which further induced hydrogen peroxide (H2O2) formation via one- and two-electron transfer pathways. Finally, the produced OH removed 0.55-9.65 and 0.16-85.54 mg L-1 total OC in adsorption and coprecipitation treatments after oxygenation. Collectively, this study highlights that OC associated with Fe(II) minerals might be labile due to the oxidation of formed OH, and the role of Fe phases in OC sequestration may be further re-evaluated under redox fluctuation conditions.


Subject(s)
Carbon , Hydroxyl Radical , Adsorption , Ferric Compounds , Hydrogen Peroxide , Minerals , Oxidation-Reduction
18.
Water Res ; 204: 117597, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34482095

ABSTRACT

In recent years, great efforts have been made to understand the capacity of microplastics to adsorb environmental pollutants; however, relatively little is known about the ability of microplastics to release inherent additives into peripheral environments. In this study, we investigated the leaching behavior of phthalate plasticizer from polyvinyl chloride (PVC) microplastics, in aqueous solutions relevant to aquatic and soil environments. It was found that plastic properties, such as particle size, plasticizer content and aging of plastics had a great effect on the leaching of dibutyl phthalate (DnBP). Phthalate release was generally higher in smaller particles and particles with higher phthalate content. Whereas, plastic aging caused by solar irradiation could either enhance phthalate release by increasing plastic hydrophilicity or decrease the leaching by reducing readily available fractions of phthalate. Regarding environmental factors, solution pH (3-9) and ionic strength (0-0.2 M NaCl) were found to have minor effect on phthalate release, while fulvic acid (0-200 mg/L) greatly promoted the release by improving phthalate solubility and solution-plastic affinity. Interestingly, we found that more DnBP was leached out when fulvic acid and NaCl coexisted, and the results from dissolved organic carbon (DOC) and three-dimensional fluorescence spectroscopy analyzes suggested that the leaching of other fulvic acid-like additives might have played a role. These findings would be helpful for predicting the potential of microplastics to release toxic additives under different environmental conditions.


Subject(s)
Microplastics , Water Pollutants, Chemical , Dibutyl Phthalate , Plasticizers , Plastics , Polyvinyl Chloride , Water Pollutants, Chemical/analysis
19.
Water Res ; 203: 117484, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34388500

ABSTRACT

The frequently occurring redox fluctuations in paddy soil are critical to the cycling of redox-sensitive elements (e.g., iron (Fe) and carbon) due to the driving of microbial processes. However, the associated abiotic process, such as hydroxyl radical (•OH) formation, was rarely investigated. Hence, we examined the under-appreciated role of •OH formation in driving polycyclic aromatic hydrocarbons (PAHs) degradation upon oxygenation of anoxic paddy slurries. Results showed that •OH production largely differed in different paddy slurries, in the range of 271.5-581.2 µmol kg-1 soil after 12 h reaction. The •OH production was highly hinged on the contents of active Fe species, i.e., exchangeable, surface-bound Fe and Fe in low-crystalline phases rather than Fe in high-crystalline minerals or silicates. Besides, •OH production significantly decreased with increasing soil depth due to the declined active Fe species and abundance of functional microbes. Oxygenation also induced the transformation of these active Fe species into the low- and high-crystalline phases, which might affect the following redox process. The produced •OH can efficiently degrade PAHs with degradation extents depending on their physiochemical properties. Our findings highlight the key roles of active Fe species in driving •OH formation and organic contaminants degradation during redox fluctuations of paddy soils.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Hydroxyl Radical , Iron , Oxidation-Reduction , Soil , Soil Pollutants/analysis
20.
Environ Sci Technol ; 55(9): 6001-6011, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33819016

ABSTRACT

Sulfide is one of the most abundant reductants in the subsurface environment, while pyrogenic carbon is a redox medium that widely exists in sulfide environment. Previous studies have found pyrogenic carbon can mediate the reductive degradation of organic pollutants under anoxic sulfide conditions; however, the scenario under oxic sulfide conditions has rarely been reported. In this study, we found that pyrogenic carbon can mediate hydroxyl radicals (•OH) generation from sulfide oxidation under dark oxic conditions. The accumulated •OH ranged from 2.07 to 101.90 µM in the presence of 5 mM Na2S and 100 mg L-1 pyrogenic carbon at pH 7.0 within 240 min. The Raman spectra and electrochemical cell experiments revealed that the carbon defects were the possible chemisorption sites for oxygen, while the graphite crystallites were responsible for the electron transfer from sulfide to O2 to generate H2O2 and •OH. Quenching experiments and degradation product identification showed that As(III) and sulfanilamide can be oxidized by the generated •OH. This research provides a new insight into the important role of pyrogenic carbon in redox reactions and dark •OH production.


Subject(s)
Hydrogen Peroxide , Hydroxyl Radical , Carbon , Oxidation-Reduction , Sulfides
SELECTION OF CITATIONS
SEARCH DETAIL
...