Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 23(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836975

ABSTRACT

Monitoring the surface subsidence in mining areas is conducive to the prevention and control of geological disasters, and the prediction and early warning of accidents. Hunan Province is located in South China. The mineral resource reserves are abundant; however, large and medium-sized mines account for a low proportion of the total, and the concentration of mineral resource distribution is low, meaning that traditional mining monitoring struggles to meet the needs of large-scale monitoring of mining areas in the province. The advantages of Interferometric Synthetic Aperture Radar (InSAR) technology in large-scale deformation monitoring were applied to identify and monitor the surface subsidence of coal mining fields in Hunan Province based on a Sentinel-1A dataset of 86 images taken from 2018 to 2020, and the process of developing surface subsidence was inverted by selecting typical mining areas. The results show that there are 14 places of surface subsidence in the study area, and accidents have occurred in 2 mining areas. In addition, the railway passing through the mining area of Zhouyuan Mountain is affected by the surface subsidence, presenting a potential safety hazard.

2.
Sensors (Basel) ; 22(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36298162

ABSTRACT

Most of the coal mines in Southwest China are located in mountainous areas with high vegetation coverage, and most activities are carried out under the mountains. The deformation monitoring and mechanical behavior analysis of the mining area helps reveal the typical mountain deformation and failure mechanism caused by underground mining activities and reduce the risk of mountain collapse in the mining area. In this manuscript, a research method for mountain stability in mining areas is proposed, which combines InSAR deformation monitoring with numerical analysis. Based on the high-precision deformation information obtained by DS-InSAR and the landslide range, a three-dimensional explicit finite difference numerical analysis method was used to reconstruct the landslide model. According to the layout of the coal mining working face, the variation mechanism of overlying stratum stress and the mountain slip in the coal mining process is inverted, and the mechanism of mountain failure and instability in the mining area is analysed. Based on the sentinel data, the experiment performed time series monitoring and inversion analysis of the mountain collapse in Nayong, Guizhou, China. The results show that mining activities a certain distance from the mountain will affect mountain stability, and there are specific mechanisms. From 2015 to 2017, the stress redistribution of overlying strata above the goaf area resulted in dense longitudinal cracks in the landslide body due to coal mining. The mountain is in a continuous damage state, and the supporting force to prevent collapse continues to decrease, resulting in a gradual decrease in landslide stability. Both the time series DS-InSAR monitoring results and numerical simulation results verify the actual occurrence and development of the on-site subsidence.


Subject(s)
Coal Mining , Computer Simulation , Mechanical Phenomena , Coal , China
SELECTION OF CITATIONS
SEARCH DETAIL
...