Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 53(5): 2344-2352, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30735361

ABSTRACT

Antagonism between heavy metal and selenium (Se) could significantly affect their biotoxicity, but little is known about the mechanisms underlying such microbial-mediated antagonistic processes as well as the formed products. In this work, we examined the cadmium (Cd)-Se interactions and their fates in Caenorhabditis elegans through in vivo and in vitro analysis and elucidated the machinery of Se-stimulated Cd detoxification. Although the Se introduction induced up to 3-fold higher bioaccumulation of Cd in C. elegans than the Cd-only group, the nematode viability remained at a similar level to the Cd-only group. The relatively lower level of reactive oxygen species in the Se & Cd group confirms a significantly enhanced Cd detoxification by Se. The Cd-Se interaction, mediated by multiple thiols, including glutathione and phytochelatin, resulted in the formation of less toxic cadmium selenide (CdSe)/cadmium sulfide (CdS) nanoparticles. The CdSe/CdS nanoparticles were mainly distributed in the pharynx and intestine of the nematodes, and continuously excreted from the body, which also benefitted the C. elegans survival. Our findings shed new light on the microbial-mediated Cd-Se interactions and may facilitate an improved understanding and control of Cd biotoxicity in complicated coexposure environments.


Subject(s)
Nanoparticles , Selenium , Animals , Cadmium , Caenorhabditis elegans , Sulfhydryl Compounds
2.
Chemosphere ; 157: 65-70, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27209554

ABSTRACT

In the present study, we used Caenorhabditis elegans assay system to investigate in hormetic effects of imidazolium-based bromide Ionic Liquids (ILs) and explored the possible underlying mechanism. Firstly, C. elegans was treated with ILs with different alkyl chain lengths at different concentrations. We found that exposure to ILs at 0.01 mg/L extended the mean lifespan of C. elegans and the ILs with longer alkyl chain showed more obvious effects. To investigate the possible mechanism, the nematodes were exposed to the three ILs at 0.01 mg/L for 2, 5, 7, 9 and 11 days. The levels of reactive oxygen species (ROS) in C. elegans increased significantly when treated for 2 days and then declined gradually compared to those of respective controls as time went on. After exposure for 11 days, the ROS levels and liposuscin accumulation were significantly lower in the treated groups than those of control group. Meanwhile, the expression of aging-related genes sod-5 and daf-16 were both massively up-regulated for the three ILs examined. Our results show that low concentration of ILs exert hormetic effect on C. elegans. ROS generation and expression of aging-related genes may play important roles in the IL-induced hormetic effect on C. elegans.


Subject(s)
Imidazoles/pharmacology , Aging/genetics , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/genetics , Dose-Response Relationship, Drug , Hormesis/drug effects , Ionic Liquids/chemistry , Ionic Liquids/metabolism , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...