Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Drugs ; 84(4): 403-423, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652356

ABSTRACT

The COVID-19 pandemic has resulted in over 772 million confirmed cases, including nearly 7 million deaths, according to the World Health Organization (WHO). Leveraging rapid development, accelerated vaccine approval processes, and large-scale production of various COVID-19 vaccines using different technical platforms, the WHO declared an end to the global health emergency of COVID-19 on May 5, 2023. Current COVID-19 vaccines encompass inactivated, live attenuated, viral vector, protein subunit, nucleic acid (DNA and RNA), and virus-like particle (VLP) vaccines. However, the efficacy of these vaccines is diminishing due to the constant mutation of SARS-CoV-2 and the heightened immune evasion abilities of emerging variants. This review examines the impact of the COVID-19 pandemic, the biological characteristics of the virus, and its diverse variants. Moreover, the review underscores the effectiveness, advantages, and disadvantages of authorized COVID-19 vaccines. Additionally, it analyzes the challenges, strategies, and future prospects of developing a safe, broad-spectrum vaccine that confers sufficient and sustainable immune protection against new variants of SARS-CoV-2. These discussions not only offer insight for the development of next-generation COVID-19 vaccines but also summarize experiences for combating future emerging viruses.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , COVID-19 Vaccines/immunology , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , SARS-CoV-2/immunology , Vaccine Development , Pandemics/prevention & control
2.
Bioelectrochemistry ; 157: 108679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471411

ABSTRACT

The primary objective of this study is to elucidate the synergistic effect of an exogenous redox mediator and carbon starvation on the microbiologically influenced corrosion (MIC) of metal nickel (Ni) by nitrate reducing Pseudomonas aeruginosa. Carbon source (CS) starvation markedly accelerates Ni MIC by P. aeruginosa. Moreover, the addition of exogenous riboflavin significantly decreases the corrosion resistance of Ni. The MIC rate of Ni (based on corrosion loss volume) is ranked as: 10 % CS level + riboflavin > 100 % CS level + riboflavin > 10 % CS level > 100 % CS level. Notably, starved P. aeruginosa biofilm demonstrates greater aggressiveness in contributing to the initiation of surface pitting on Ni. Under CS deficiency (10 % CS level) in the presence of riboflavin, the deepest Ni pits reach a maximum depth of 11.2 µm, and the corrosion current density (icorr) peak at approximately 1.35 × 10-5 A·cm-2, representing a 2.6-fold increase compared to the full-strength media (5.25 × 10-6 A·cm-2). For the 10 % CS and 100 % CS media, the addition of exogenous riboflavin increases the Ni MIC rate by 3.5-fold and 2.9-fold, respectively. Riboflavin has been found to significantly accelerate corrosion, with its augmentation effect on Ni MIC increasing as the CS level decreases. Overall, riboflavin promotes electron transfer from Ni to P. aeruginosa, thus accelerating Ni MIC.


Subject(s)
Nickel , Pseudomonas aeruginosa , Corrosion , Carbon , Riboflavin/pharmacology , Biofilms
3.
Sci China Life Sci ; 66(11): 2466-2514, 2023 11.
Article in English | MEDLINE | ID: mdl-37286860

ABSTRACT

Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Nutrients , Diet
4.
Front Cell Infect Microbiol ; 13: 1146394, 2023.
Article in English | MEDLINE | ID: mdl-36936761

ABSTRACT

Pestiviruses are a class of viruses that in some cases can cause persistent infection of the host, thus posing a threat to the livestock industry. Interferons (IFNs) are a group of secreted proteins that play a crucial role in antiviral defense. In this review, on the one hand, we elaborate on how pestiviruses are recognized by the host retinoic acid-inducible gene-I (RIG-I), melanoma-differentiation-associated protein 5 (MDA5), and Toll-like receptor 3 (TLR3) proteins to induce the synthesis of IFNs. On the other hand, we focus on reviewing how pestiviruses antagonize the production of IFNs utilizing various strategies mediated by self-encoded proteins, such as the structural envelope protein (Erns) and non-structural protein (Npro). Hence, the IFN signal transduction pathway induced by pestiviruses infection and the process of pestiviruses blockade on the production of IFNs intertwines into an intricate regulatory network. By reviewing the interaction between IFN and pestiviruses (based on studies on BVDV and CSFV), we expect to provide a theoretical basis and reference for a better understanding of the mechanisms of induction and evasion of the innate immune response during infection with these viruses.


Subject(s)
Pestivirus , Viruses , Interferons , Immunity, Innate , Antiviral Agents , Pestivirus/metabolism
5.
Proc Natl Acad Sci U S A ; 119(44): e2215921119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279432

ABSTRACT

Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA+ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA-mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling-mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN.


Subject(s)
Glomerulonephritis, IGA , Mice , Animals , gamma-Aminobutyric Acid/metabolism , Immunoglobulin A/metabolism , Germinal Center/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Differentiation , Mechanistic Target of Rapamycin Complex 1/metabolism , Mammals
6.
Chem Sci ; 12(36): 12181-12191, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34667584

ABSTRACT

NleB/SseK effectors are arginine-GlcNAc-transferases expressed by enteric bacterial pathogens that modify host cell proteins to disrupt signaling pathways. While the conserved Citrobacter rodentium NleB and E. coli NleB1 proteins display a broad selectivity towards host proteins, Salmonella enterica SseK1, SseK2, and SseK3 have a narrowed protein substrate selectivity. Here, by combining computational and biophysical experiments, we demonstrate that the broad protein substrate selectivity of NleB relies on Tyr284NleB/NleB1, a second-shell residue contiguous to the catalytic machinery. Tyr284NleB/NleB1 is important in coupling protein substrate binding to catalysis. This is exemplified by S286YSseK1 and N302YSseK2 mutants, which become active towards FADD and DR3 death domains, respectively, and whose kinetic properties match those of enterohemorrhagic E. coli NleB1. The integration of these mutants into S. enterica increases S. enterica survival in macrophages, suggesting that better enzymatic kinetic parameters lead to enhanced virulence. Our findings provide insights into how these enzymes finely tune arginine-glycosylation and, in turn, bacterial virulence. In addition, our data show how promiscuous glycosyltransferases preferentially glycosylate specific protein substrates.

7.
Front Nutr ; 8: 751388, 2021.
Article in English | MEDLINE | ID: mdl-34604287

ABSTRACT

Accumulating evidence shows that the γ-amino butyric acid (GABA)ergic system affects the functions of different organs, and liver is one of the most sex-dimorphic organs in animals. However, whether and how the GABAergic system influences liver function in a sex-specific manner at the intrinsic molecular level remains elusive. In this study, firstly, we find that the levels of GABA are significantly increased in the livers of female mice with GABA transporter (GAT)-2 deficiency (KO) whereas it only slightly increased in male GAT-2 KO mice. Apart from the amino acid profiles, the expressions of toll-like receptors (TLRs) also differ in the livers of female and male KO mice. Moreover, RNA-seq results show 2,227 differentially expressed genes (DEGs) in which 1,030 are upregulated whereas 1,197 that are downregulated in the livers of female KO mice. Notably, oxidative phosphorylation, non-alcoholic fatty liver disease, Huntington's disease, and peroxisome proliferator-activated receptor (PPAR) signaling pathways are highly enriched by GAT-2 deficiency, indicating that these pathways probably meditate the effects of GAT-2 on female liver functions, on the other hand, only 1,233 DEGs, including 474 are upregulated and 759 are downregulated in the livers of male KO mice. Interestingly, retinol metabolism, PPAR signaling pathway, and tuberculosis pathways are substantially enriched by GAT-2 deficiency, suggesting that these pathways may be responsible for the effects of GAT-2 on male liver functions. Collectively, our results reveal the sex-dimorphic effects of GAT-2 in guiding liver functions, and we propose that targeting the GABAergic system (e.g., GATs) in a sex-specific manner could provide previously unidentified therapeutic opportunities for liver diseases.

8.
Microbiome ; 9(1): 60, 2021 03 14.
Article in English | MEDLINE | ID: mdl-33715629

ABSTRACT

Bacteria, viruses, protozoa, and fungi establish a complex ecosystem in the gut. Like other microbiota, gut mycobiota plays an indispensable role in modulating intestinal physiology. Notably, the most striking characteristics of intestinal fungi are their extraintestinal functions. Here, we provide a comprehensive review of the importance of gut fungi in the regulation of intestinal, pulmonary, hepatic, renal, pancreatic, and brain functions, and we present possible opportunities for the application of gut mycobiota to alleviate/treat human diseases. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Bacteria , Fungi/genetics , Humans
9.
Pathogens ; 10(2)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672424

ABSTRACT

The type III secretion system effector proteins NleB and SseK are glycosyltransferases that glycosylate protein substrates on arginine residues. We conducted high-throughput screening assays on 42,498 compounds to identify NleB/SseK inhibitors. Such small molecules may be useful as mechanistic probes and may have utility in the eventual development of anti-virulence therapies against enteric bacterial pathogens. We observed that YM155 (sepantronium bromide) inhibits the activity of Escherichia coli NleB1, Citrobacter rodentium NleB, and both Salmonella enterica SseK1 and SseK2. YM155 was not toxic to mammalian cells, nor did it show cross-reactivity with the mammalian O-linked N-acetylglucosaminyltransferase (OGT). YM155 reduced Salmonella survival in mouse macrophage-like cells but had no direct impact on bacterial growth rates, suggesting YM155 may have utility as a potential anti-virulence inhibitor.

10.
Adv Nutr ; 11(4): 773-783, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32221578

ABSTRACT

Methionine restriction (MR) extends lifespans in multiple species through mechanisms that include enhanced oxidative stress resistance and inhibition of insulin/insulin-like growth factor I (IGF-I) signaling. Methionine and S-adenosylmethionine (SAM) are the essential precursors of bacterial quorum sensing (QS) molecules, and therefore, MR might also affect bacterial communication to prevent enteric bacterial infection as well as chronic inflammation, which contributes to lifespan prolongation. Here, we discuss the influence of MR on oxidative stress resistance and inhibition of insulin/IGF-I cell signaling and further propose a potential mechanism involving bacterial QS inhibition for lifespan extension. Unraveling the connection between MR and inhibition of QS provides new strategies for combating infectious diseases, resulting in enriched understanding of MR-induced lifespan extension.


Subject(s)
Longevity , Quorum Sensing , Bacteria/metabolism , Humans , Methionine/metabolism , Oxidative Stress
11.
J Pineal Res ; 66(2): e12547, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30597604

ABSTRACT

Melatonin is a ubiquitous hormone found in various organisms and highly affects the function of immune cells. In this review, we summarize the current understanding of the significance of melatonin in macrophage biology and the beneficial effects of melatonin in macrophage-associated diseases. Enzymes associated with synthesis of melatonin, as well as membrane receptors for melatonin, are found in macrophages. Indeed, melatonin influences the phenotype polarization of macrophages. Mechanistically, the roles of melatonin in macrophages are related to several cellular signaling pathways, such as NF-κB, STATs, and NLRP3/caspase-1. Notably, miRNAs (eg, miR-155/-34a/-23a), cellular metabolic pathways (eg, α-KG, HIF-1α, and ROS), and mitochondrial dynamics and mitophagy are also involved. Thus, melatonin modulates the development and progression of various macrophage-associated diseases, such as cancer and rheumatoid arthritis. This review provides a better understanding about the importance of melatonin in macrophage biology and macrophage-associated diseases.


Subject(s)
Macrophages/metabolism , Melatonin/metabolism , Animals , Humans , Macrophages/drug effects , Melatonin/pharmacology
12.
Adv Exp Med Biol ; 1111: 205-218, 2019.
Article in English | MEDLINE | ID: mdl-30411307

ABSTRACT

Bacteria deliver virulence proteins termed 'effectors' to counteract host innate immunity. Protein-protein interactions within the host cell ultimately subvert the generation of an inflammatory response to the infecting pathogen. Here we briefly describe a subset of T3SS effectors produced by enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), Citrobacter rodentium, and Salmonella enterica that inhibit innate immune pathways. These effectors are interesting for structural and mechanistic reasons, as well as for their potential utility in being engineered to treat human autoimmune disorders associated with perturbations in NF-κB signaling.


Subject(s)
Citrobacter rodentium/immunology , Enteropathogenic Escherichia coli/immunology , Escherichia coli Proteins/metabolism , Immunity, Innate/immunology , Salmonella enterica/immunology , Type III Secretion Systems/metabolism , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Citrobacter rodentium/metabolism , Enteropathogenic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/pathogenicity , Humans , Salmonella enterica/metabolism , Virulence Factors/immunology , Virulence Factors/metabolism
13.
Mucosal Immunol ; 12(2): 531-544, 2019 03.
Article in English | MEDLINE | ID: mdl-30523310

ABSTRACT

The Î³-amino butyric acid (GABA)ergic system shapes the activation and function of immune cells. The present study was conducted to explore the regulation of GABA transporter (GAT)-2 on the differentiation of Th17 cells. Here we found that Th17 cells show higher abundance of GAT-2, and have distinct cellular metabolic signatures, such as the GABA shunt pathway, as compared to naïve T cells. GAT-2 deficiency had little effect on the metabolic signature in naïve T cells, but impaired the GABA uptake and GABA shunt pathway in Th17 cells. GAT-2 deficiency had little effect on T cell development and peripheral T cell homeostasis; however, its deficiency promoted Th17 cell differentiation in vitro. Mechanistically, GAT-2 deficiency promoted differentiation of Th17 cells through activation of GABA-mTOR signaling. In a mouse model of intestinal infection and inflammation, GAT-2 deficiency promoted Th17 responses. Collectively, GAT-2 deficiency promotes Th17 cell responses through activation of GABA-mTOR signaling.


Subject(s)
Citrobacter rodentium/physiology , Enterobacteriaceae Infections/immunology , GABA Agents/immunology , GABA Plasma Membrane Transport Proteins/metabolism , Intestines/immunology , Th17 Cells/immunology , gamma-Aminobutyric Acid/metabolism , Animals , Cell Differentiation , Cells, Cultured , GABA Plasma Membrane Transport Proteins/genetics , Homeostasis , Intestines/microbiology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
14.
J Pineal Res ; 65(4): e12524, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30230594

ABSTRACT

Melatonin has been shown to improve lipid metabolism and gut microbiota communities in animals and humans; however, it remains to know whether melatonin prevents obesity through gut microbiota. Here, we found that high-fat diet promoted the lipid accumulation and intestinal microbiota dysbiosis in mice, while oral melatonin supplementation alleviated the lipid accumulation and reversed gut microbiota dysbiosis, including the diversity of intestinal microbiota, relative abundances of Bacteroides and Alistipes, and functional profiling of microbial communities, such as energy metabolism, lipid metabolism, and carbohydrate metabolism. Interestingly, melatonin failed to alleviate the high-fat-induced lipid accumulation in antibiotic-treated mice; however, microbiota transplantation from melatonin-treated mice alleviated high-fat diet-induced lipid metabolic disorders. Notably, short-chain fatty acids were decreased in high-fat diet-fed mice, while melatonin treatment improved the production of acetic acid. Correlation analysis found a marked correlation between production of acetic acid and relative abundances of Bacteroides and Alistipes. Importantly, sodium acetate treatment also alleviated high-fat diet-induced lipid metabolic disorders. Taken together, our results suggest that melatonin improves lipid metabolism in high-fat diet-fed mice, and the potential mechanisms may be associated with reprogramming gut microbiota, especially, Bacteroides and Alistipes-mediated acetic acid production. Future studies are needed for patients with metabolic syndrome to fully understand melatonin's effects on body weight and lipid profiles and the potential mechanism of gut microbiota.


Subject(s)
Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Melatonin/physiology , Animals , Anti-Bacterial Agents/pharmacology , Blotting, Western , Female , Fluorescent Antibody Technique , Mice , Mice, Inbred ICR , Real-Time Polymerase Chain Reaction
15.
Article in English | MEDLINE | ID: mdl-30619781

ABSTRACT

The enteropathogenic and enterohemorrhagic Escherichia coli NleB proteins as well as the Salmonella enterica SseK proteins are type III secretion system effectors that function as glycosyltransferase enzymes to post-translationally modify host substrates on arginine residues. This modification is unusual because it occurs on the guanidinium groups of arginines, which are poor nucleophiles, and is distinct from the activity of the mammalian O-linked N-acetylglucosaminyltransferase. We conducted high-throughput screening assays to identify small molecules that inhibit NleB/SseK activity. Two compounds, 100066N and 102644N, both significantly inhibited NleB1, SseK1, and SseK2 activities. Addition of these compounds to cultured mammalian cells was sufficient to inhibit NleB1 glycosylation of the tumor necrosis factor receptor type 1-associated DEATH domain protein. These compounds were also capable of inhibiting Salmonella enterica strain ATCC 14028 replication in mouse macrophage-like cells. Neither inhibitor was significantly toxic to mammalian cells, nor showed in vitro cross-reactivity with the mammalian O-linked N-acetylglucosaminyltransferase. These compounds or derivatives generated from medicinal chemistry refinements may have utility as a potential alternative therapeutic strategy to antibiotics or as reagents to further the study of bacterial glycosyltransferases.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/isolation & purification , Escherichia coli Proteins/antagonists & inhibitors , Glycosyltransferases/antagonists & inhibitors , High-Throughput Screening Assays , Virulence Factors/antagonists & inhibitors , Animals , Cell Line , Humans , Macrophages/microbiology , Mice , Salmonella enterica/drug effects , Salmonella enterica/enzymology , Salmonella enterica/growth & development
16.
Vet Res ; 47: 24, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26857562

ABSTRACT

F4(+) enterotoxigenic Escherichia coli (ETEC) strains cause diarrheal disease in neonatal and post-weaned piglets. Several different host receptors for F4 fimbriae have been described, with porcine aminopeptidase N (APN) reported most recently. The FaeG subunit is essential for the binding of the three F4 variants to host cells. Here we show in both yeast two-hybrid and pulldown assays that APN binds directly to FaeG, the major subunit of F4 fimbriae, from three serotypes of F4(+) ETEC. Modulating APN gene expression in IPEC-J2 cells affected ETEC adherence. Antibodies raised against APN or F4 fimbriae both reduced ETEC adherence. Thus, APN mediates the attachment of F4(+) E. coli to intestinal epithelial cells.


Subject(s)
CD13 Antigens/metabolism , Enterotoxigenic Escherichia coli/physiology , Escherichia coli Infections/veterinary , Fimbriae, Bacterial/physiology , Swine Diseases/immunology , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Animals , Antibodies, Bacterial/immunology , CD13 Antigens/genetics , Epithelial Cells/enzymology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Gene Expression , Intestinal Mucosa/enzymology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Swine , Swine Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...