Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 114(13): 2802-11, 2009 Sep 24.
Article in English | MEDLINE | ID: mdl-19654409

ABSTRACT

Recombinant FVIII formulated in PEG-ylated liposomes (rFVIII-PEG-Lip) was reported to increase the bleed-free days from 7 to 13 days (at 35 IU/kg rFVIII) in severe hemophilia A patients. To understand the underlying mechanism, we sought to recapitulate its efficacy in hemophilia A mice. Animals treated with rFVIII-PEG-Lip achieved approximately 30% higher survival relative to rFVIII after tail vein transection inflicted 24 hours after dosing. The efficacy of rFVIII-PEG-Lip represents an approximately 2.5-fold higher "apparent" FVIII activity, which is not accounted for by its modestly increased (13%) half-life. The enhanced efficacy requires complex formation between rFVIII and PEG-Lip before the administration. Furthermore, PEG-Lip associates with the majority of platelets and monocytes in vivo, and results in increased P-selectin surface expression on platelets in response to collagen. Rotational thromboelastometry (ROTEM) analysis of whole blood from rFVIII-PEG-Lip-treated animals at 5 minutes up to 72 hours after dosing recapitulated the 2- to 3-fold higher apparent FVIII activity. The enhanced procoagulant activity is fully retained in plasma unless microparticles are removed by ultracentrifugation. Taken together, the efficacy of rFVIII-PEG-Lip is mediated mainly by its sensitization of platelets and the generation of procoagulant microparticles that may express sustained high-affinity receptors for FVIII.


Subject(s)
Factor VIII/administration & dosage , Hemophilia A/drug therapy , Polyethylene Glycols/administration & dosage , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Factor VIII/metabolism , Half-Life , Hemophilia A/mortality , Hemophilia A/pathology , Liposomes , Macromolecular Substances/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Protein Binding , Recombinant Proteins/administration & dosage , Recombinant Proteins/metabolism , Substrate Specificity , Survival Analysis , Treatment Outcome
2.
Chem Biol Drug Des ; 74(1): 43-50, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19519743

ABSTRACT

Heat-shock protein-90 is an attractive target for anticancer drugs, as heat-shock protein-90 blockers such as the ansamycin 17-(allylamino)-17-demethoxygeldanamycin greatly reduce the expression of many signaling molecules that are disregulated in cancer cells and are key drivers of tumor growth and metastasis. While 17-(allylamino)-17-demethoxygeldanamycin has shown promise in clinical trials, this compound class has significant template-related drawbacks. In this paper, we describe a new, potent non-ansamycin small-molecule inhibitor of heat-shock protein-90, BX-2819, containing resorcinol and triazolothione rings. Structural studies demonstrate binding of BX-2819 to the ADP/ATP-binding pocket of heat-shock protein-90. The compound blocked expression of heat-shock protein-90 client proteins in cancer cell lines and inhibited cell growth with a potency similar to 17-(allylamino)-17-demethoxygeldanamycin. In a panel of four cancer cell lines, BX-2819 blocked growth with an average IC(50) value of 32 nM (range of 7-72 nM). Efficacy studies demonstrated that treatment with BX-2819 significantly inhibited the growth of NCI-N87 and HT-29 tumors in nude mice, consistent with pharmacodynamic studies showing inhibition of heat-shock protein-90 client protein expression in tumors for greater than 16 h after dosing. These data support further studies to assess the potential of BX-2819 and related analogs for the treatment of cancer.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Triazoles/pharmacology , Animals , Benzoquinones/chemistry , Benzoquinones/pharmacology , Cell Line, Tumor , Computer Simulation , Crystallography, X-Ray , Drug Screening Assays, Antitumor , HSP90 Heat-Shock Proteins/metabolism , HT29 Cells , Humans , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/pharmacology , Mice , Mice, Nude , Transplantation, Heterologous , Triazoles/chemistry , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem Lett ; 17(14): 3819-25, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17544272

ABSTRACT

Based on the lead compound BX-517, a series of C-4' substituted indolinones have been synthesized and evaluated for PDK1 inhibition. Modification at C-4' of the pyrrole afforded potent compounds (7b and 7d) with improved solubility and ADME properties. In this letter, we describe the synthesis, selectivity profile, and pharmacokinetic data of selected compounds.


Subject(s)
Indoles/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Urea/analogs & derivatives , 3-Phosphoinositide-Dependent Protein Kinases , Cell Line, Tumor , Humans , Indoles/pharmacology , Protein Kinase Inhibitors/chemistry , Urea/chemistry , Urea/pharmacology
5.
J Biol Chem ; 280(20): 19867-74, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15772071

ABSTRACT

The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , 3-Phosphoinositide-Dependent Protein Kinases , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catalytic Domain , Cell Division/drug effects , Cell Line, Tumor , Drug Evaluation, Preclinical , Female , HeLa Cells , Humans , In Vitro Techniques , Kinetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Melanoma, Experimental/secondary , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Pyrimidines/chemistry , Pyrimidines/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...