Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
Int J Biol Macromol ; 268(Pt 2): 130853, 2024 May.
Article in English | MEDLINE | ID: mdl-38570000

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a complex vascular disorder, characterized by pulmonary vessel remodeling and perivascular inflammation. Pulmonary arterial smooth muscle cells (PASMCs) pyroptosis is a novel pathological mechanism implicated of pulmonary vessel remodeling. However, the involvement of circRNAs in the process of pyroptosis and the underlying regulatory mechanisms remain inadequately understood. METHODS: Western blotting, PI staining and LDH release were used to explore the role of circLrch3 in PASMCs pyroptosis. Moreover, S9.6 dot blot and DRIP-PCR were used to assess the formation of R-loop between circLrch3 and its host gene Lrch3. Chip-qPCR were used to evaluate the mechanism of super enhancer-associated circLrh3, which is transcriptionally activated by the transcription factor Tbx2. RESULTS: CircLrch3 was markedly upregulated in hypoxic PASMCs. CircLrch3 knockdown inhibited hypoxia induced PASMCs pyroptosis in vivo and in vitro. Mechanistically, circLrch3 can form R-loop with host gene to upregulate the protein and mRNA expression of Lrch3. Furthermore, super enhancer interacted with the Tbx2 at the Lrch3 promoter locus, mediating the augmented transcription of circLrch3. CONCLUSION: Our findings clarify the role of a super enhancer-associated circLrch3 in the formation of R-loop with the host gene Lrch3 to modulate pyroptosis in PASMCs, ultimately promoting the development of PH.


Subject(s)
Myocytes, Smooth Muscle , Pulmonary Artery , Pyroptosis , RNA, Circular , Pyroptosis/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Myocytes, Smooth Muscle/metabolism , Rats , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Cell Hypoxia/genetics , Muscle, Smooth, Vascular/metabolism , Male , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Gene Expression Regulation , Enhancer Elements, Genetic/genetics , Hypoxia/genetics , Hypoxia/metabolism , Super Enhancers
2.
Appl Microbiol Biotechnol ; 108(1): 214, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363425

ABSTRACT

Glucosylglycerol (GG) is a natural compatible solute that can be synthesized by many cyanobacteria and a few heterotrophic bacteria under high salinity conditions. In cyanobacteria, GG is synthesized by GG-phosphate synthase and GG-phosphate phosphatase, and a hydrolase GGHA catalyzes its degradation. In heterotrophic bacteria (such as some Marinobacter species), a fused form of GG-phosphate phosphatase and GG-phosphate synthase is present, but the cyanobacteria-like degradation pathway is not available. Instead, a phosphorylase GGP, of which the coding gene is located adjacent to the gene that encodes the GG-synthesizing enzyme, is supposed to perform the GG degradation function. In the present study, a GGP homolog from the salt-tolerant M. salinexigens ZYF650T was characterized. The recombinant GGP catalyzed GG decomposition via a two-step process of phosphorolysis and hydrolysis in vitro and exhibited high substrate specificity toward GG. The activity of GGP was enhanced by inorganic salts at low concentrations but significantly inhibited by increasing salt concentrations. While the investigation on the physiological role of GGP in M. salinexigens ZYF650T was limited due to the failed induction of GG production, the heterologous expression of ggp in the living cells of the GG-producing cyanobacterium Synechocystis sp. PCC 6803 significantly reduced the salt-induced GG accumulation. Together, these data suggested that GGP may represent a novel pathway of microbial GG catabolism. KEY POINTS: • GGP catalyzes GG degradation by a process of phosphorolysis and hydrolysis • GGP-catalyzed GG degradation is different from GGHA-based GG degradation • GGP represents a potential novel pathway of microbial GG catabolism.


Subject(s)
Glucosides , Phosphorylases , Synechocystis , Phosphorylases/chemistry , Phosphoric Monoester Hydrolases/genetics , Phosphates
3.
Am J Respir Cell Mol Biol ; 70(6): 468-481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38381098

ABSTRACT

Small muscular pulmonary artery remodeling is a dominant feature of pulmonary arterial hypertension (PAH). PSEN1 affects angiogenesis, cancer, and Alzheimer's disease. We aimed to determine the role of PSEN1 in the pathogenesis of vascular remodeling in pulmonary hypertension (PH). Hemodynamics and vascular remodeling in the Psen1-knockin and smooth muscle-specific Psen1-knockout mice were assessed. The functional partners of PSEN1 were predicted by bioinformatics analysis and biochemical experiments. The therapeutic effect of PH was evaluated by administration of the PSEN1-specific inhibitor ELN318463. We discovered that both the mRNA and protein levels of PSEN1 were increased over time in hypoxic rats, monocrotaline rats, and Su5416/hypoxia mice. Psen1 transgenic mice were highly susceptible to PH, whereas smooth muscle-specific Psen1-knockout mice were resistant to hypoxic PH. STRING analysis showed that Notch1/2/3, ß-catenin, Cadherin-1, DNER (delta/notch-like epidermal growth factor-related receptor), TMP10, and ERBB4 appeared to be highly correlated with PSEN1. Immunoprecipitation confirmed that PSEN1 interacts with ß-catenin and DNER, and these interactions were suppressed by the catalytic PSEN1 mutations D257A, D385A, and C410Y. PSEN1 was found to mediate the nuclear translocation of the Notch1 intracellular domains and activated RBP-Jκ. Octaarginine-coated liposome-mediated pharmacological inhibition of PSEN1 significantly prevented and reversed the pathological process in hypoxic and monocrotaline-induced PH. PSEN1 essentially drives the pathogenesis of PAH and interacted with the noncanonical Notch ligand DNER. PSEN1 can be used as a promising molecular target for treating PAH. PSEN1 inhibitor ELN318463 can prevent and reverse the progression of PH and can be developed as a potential anti-PAH drug.


Subject(s)
Hypertension, Pulmonary , Presenilin-1 , Vascular Remodeling , Animals , Vascular Remodeling/drug effects , Presenilin-1/genetics , Presenilin-1/metabolism , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/pathology , Rats , Mice , Mice, Knockout , Rats, Sprague-Dawley , Male , Pyrroles/pharmacology , Humans , Hypoxia/metabolism , Monocrotaline , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Indoles
4.
Extremophiles ; 28(1): 11, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240933

ABSTRACT

The isolated halophilic bacterial strain Halovibrio variabilis TG-5 showed a good performance in the pretreatment of coal gasification wastewater. With the optimum culture conditions of pH = 7, a temperature of 46 °C, and a salinity of 15%, the chemical oxygen demand and volatile phenol content of pretreated wastewater were decreased to 1721 mg/L and 94 mg/L, respectively. The removal rates of chemical oxygen demand and volatile phenol were over 90% and 70%, respectively. At the optimum salinity conditions of 15%, the total yield of intracellular compatible solutes and the extracellular transient released yield under hypotonic conditions were increased to 6.88 g/L and 3.45 g/L, respectively. The essential compatible solutes such as L-lysine, L-valine, and betaine were important in flocculation mechanism in wastewater pretreatment. This study provided a new method for pretreating coal gasification wastewater by halophilic microorganisms, and revealed the crucial roles of compatible solutes in the flocculation process.


Subject(s)
Halomonadaceae , Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Flocculation , Coal , Phenol/analysis , Phenols , Bioreactors
5.
Arterioscler Thromb Vasc Biol ; 43(7): 1179-1198, 2023 07.
Article in English | MEDLINE | ID: mdl-37139839

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have been implicated in pulmonary hypertension progression through largely unknown mechanisms. Pulmonary artery endothelial cell (PAEC) dysfunction is a hallmark in the pathogenesis of pulmonary hypertension. However, the specific role of circular RNAs in PAEC injury caused by hypoxia remains unclear. METHODS: In this study, using the Western blotting, RNA pull down, Dual-luciferase reporter assay, immunohistochemistry, and immunofluorescence, we identified a novel circular RNA derived from alternative splicing of the keratin 4 gene (circKrt4). RESULTS: CircKrt4 was upregulated in lung tissues and plasma and specifically in PAECs under hypoxic conditions. In the nucleus, circKrt4 induces endothelial-to-mesenchymal transition by interacting with the Pura (transcriptional activator protein Pur-alpha) to promote N-cadherin gene activation. In the cytoplasm, increased circKrt4 leads to mitochondrial dysfunction by inhibiting cytoplasmic-mitochondrial shuttling of mitochondrial-bound Glpk (glycerol kinase). Intriguingly, circKrt4 was identified as a super enhancer-associated circular RNA that is transcriptionally activated by a transcription factor, CEBPA (CCAAT enhancer binding protein alpha). Furthermore, RBM25 (RNA-binding-motif protein 25) was found to regulate circKrt4 cyclization by increase the back-splicing of Krt4 gene. CONCLUSIONS: These findings demonstrate that a super enhancer-associated circular RNA-circKrt4 modulates PAEC injury to promote pulmonary hypertension by targeting Pura and Glpk.


Subject(s)
Hypertension, Pulmonary , Pulmonary Artery , Mice , Animals , Pulmonary Artery/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Cell Proliferation , Hypoxia/metabolism , RNA/genetics , Endothelial Cells/metabolism
6.
J Am Heart Assoc ; 12(7): e028299, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36942752

ABSTRACT

Background Aberrant expression of circular RNAs (circRNAs) contributes to the initiation and progression of pulmonary hypertension (PH). Hypoxia-inducible factor (HIF) is a well-known modulator of hypoxia-induced PH. The role and underlying mechanism of circRNAs in the regulation of HIF expression remains elusive. Methods and Results We profiled pulmonary artery transcriptomes using RNA sequencing and screened circRNAs associated with hypoxia treatment. The expression of a novel circRNA, circ_chr11_67292179-67294612 (circ-myh8), was increased by hypoxia in a time-dependent manner. We evaluated the effects of circ-myh8 overexpression by adeno-associated virus or inhibition by short hairpin RNA on proliferation and cell cycling in mice and pulmonary artery smooth muscle cells. Overexpression of circ-myh8 promotes PH under normoxia, and disruption of circ-myh8 by short hairpin RNA mitigates PH in chronic hypoxic mice. Biologically, circ-myh8 induces the proliferation and cell-cycle progression of pulmonary artery smooth muscle cells in vivo and in vitro. Mechanistically, RNA pull-down and RNA immunoprecipitation assays were used to examine the interaction of circRNAs with the binding protein KAT7 (lysine acetyltransferase 7). The acetylation level of lysine 5 of histone H4 in the transcriptional initiation region of HIF1α was determined by chromatin immunoprecipitation assay followed by reverse transcription-quantitative polymerase chain reaction. Circ-myh8 acts as a modular scaffold to recruit histone acetyltransferase KAT7 to the promoters of HIF1α, which elicits acetylation of lysine 5 of histone H4 in their promoters. Conclusions Our findings not only reveal the pivotal roles of circ-myh8 in governing histone modification in anti-PH treatment but also advocate triggering the circ-myh8/KAT7/HIF1α pathway to combat PH.


Subject(s)
Histone Acetyltransferases , Hypertension, Pulmonary , Hypoxia-Inducible Factor 1, alpha Subunit , Myosin Heavy Chains , RNA, Circular , Animals , Mice , Cell Proliferation , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histones , Hypertension, Pulmonary/genetics , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lysine , RNA, Circular/genetics , RNA, Small Interfering , Myosin Heavy Chains/genetics
7.
J Mol Cell Cardiol ; 176: 41-54, 2023 03.
Article in English | MEDLINE | ID: mdl-36716953

ABSTRACT

Pulmonary hypertension (PH) is a serious and fatal disease characterized by pulmonary vasoconstriction and pulmonary vascular remodeling. The excessive autophagy of pulmonary artery smooth muscle cells (PASMCs) is one of the important factors of pulmonary vascular remodeling. A number of studies have shown that circular RNA (circRNA) can participate in the onset of PH. Our previous studies have shown that circRNA calmodulin 4 (circ-calm4) is involved in the progression of hypoxic PH. However, the role of circ-calm4 on regulation of hypoxic PH autophagy has not been reported. In this study, we demonstrated for the first time that hypoxia-mediated upregulated circ-calm4 expression has a key regulatory effect on autophagy in hypoxia-induced PASMCs and hypoxic PH mouse models. Knockdown of circ-calm4 both in vivo and in vitro can inhibit the autophagy in PASMCs induced by hypoxia. We also performed bioinformatics predictions and conducted experiments to verify that circ-calm4 bound to the purine-rich binding protein (Purb) to promote its expression in the nucleus, thereby initiating the transcription of autophagy-related protein Beclin1. Interestingly, we found that Beclin1 transcription initiated by Purb was accompanied by a modification of Beclin1 super-enhancer to improve transcription activity and efficiency. Overall, our results confirm that the circ-calm4/Purb/Beclin1 signal axis is involved in the occurrence of hypoxia-induced PASMCs autophagy, and the novel regulatory mechanisms and signals transduction pathways in PASMC autophagy induced by hypoxia.


Subject(s)
Hypertension, Pulmonary , Pulmonary Artery , Animals , Mice , Autophagy , Beclin-1/genetics , Beclin-1/metabolism , Cell Proliferation , Cells, Cultured , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Vascular Remodeling
8.
Mol Med ; 28(1): 126, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36284300

ABSTRACT

BACKGROUND: Pyroptosis is a form of programmed cell death involved in the pathophysiological progression of hypoxic pulmonary hypertension (HPH). Emerging evidence suggests that N6-methyladenosine (m6A)-modified transcripts of long noncoding RNAs (lncRNAs) are important regulators that participate in many diseases. However, whether m6A modified transcripts of lncRNAs can regulate pyroptosis in HPH progression remains unexplored. METHODS: The expression levels of FENDRR in hypoxic pulmonary artery endothelial cells (HPAECs) were detected by using quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization (FISH). Western blot, Lactate dehydrogenase (LDH) release assay, Annexin V-FITC/PI double staining, Hoechst 33342/PI fluorescence staining and Caspase-1 activity assay were used to detect the role of FENDRR in HPAEC pyroptosis. The relationship between FENDRR and dynamin-related protein 1 (DRP1) was explored using bioinformatics analysis, Chromatin Isolation by RNA Purification (CHIRP), Electrophoretic mobility shift assay (EMSA) and Methylation-Specific PCR (MSP) assays. RNA immunoprecipitation (RIP) and m6A dot blot were used to detect the m6A modification levels of FENDRR. A hypoxia-induced mouse model of pulmonary hypertension (PH) was used to test preventive effect of conserved fragment TFO2 of FENDRR. RESULTS: We found that FENDRR was significantly downregulated in the nucleus of hypoxic HPAECs. FENDRR overexpression inhibited hypoxia-induced HPAEC pyroptosis. Additionally, DRP1 is a downstream target gene of FENDRR, and FENDRR formed an RNA-DNA triplex with the promoter of DRP1, which led to an increase in DRP1 promoter methylation that decreased the transcriptional level of DRP1. Notably, we illustrated that the m6A reader YTHDC1 plays an important role in m6A-modified FENDRR degradation. Additionally, conserved fragment TFO2 of FENDEE overexpression prevented HPH in vivo. CONCLUSION: In summary, our results demonstrated that m6A-induced decay of FENDRR promotes HPAEC pyroptosis by regulating DRP1 promoter methylation and thereby provides a novel potential target for HPH therapy.


Subject(s)
Hypertension, Pulmonary , RNA, Long Noncoding , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , DNA Methylation , Endothelial Cells/metabolism , Pyroptosis , Pulmonary Artery , Hypertension, Pulmonary/genetics , In Situ Hybridization, Fluorescence , Hypoxia/genetics , Dynamins/genetics , Dynamins/metabolism , Chromatin , Lactate Dehydrogenases/genetics , Lactate Dehydrogenases/metabolism , Caspases
9.
Mol Ther Nucleic Acids ; 28: 920-934, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35757299

ABSTRACT

Pyroptosis is involved in pulmonary hypertension (PH); however, whether this process is regulated by long non-coding RNAs (lncRNAs) is unclear. Some lncRNAs encode peptides; therefore, whether the regulation of pyroptosis in PH depends on lncRNAs themselves or their encoded peptides needs to be explored. We aimed to characterize the role of the peptide RPS4XL encoded by lnc-Rps4l and its regulatory mechanisms during pyroptosis in PH. Transgenic mice overexpression of lnc-Rps4l was established to rescue the inhibition of hypoxia-induced pyroptosis in pulmonary artery smooth muscle cells (PASMCs). An adeno-associated virus 9 construct with a mutation in the open reading frame of lnc-Rps4l was used to verify that it could inhibit hypoxia-induced PASMCs pyroptosis through its encoded peptide RPS4XL. Glutathione S-transferase (GST) pull-down assays revealed that RPS4XL bound to HSC70, and microscale thermophoresis (MST) was performed to determine the HSC70 domain that interacted with RPS4XL. Through glycosylation site mutation, we confirmed that RPS4XL inhibited hypoxia-induced PASMCs pyroptosis by regulating HSC70 glycosylation. Our results showed that RPS4XL inhibits pyroptosis in a PH mouse model and hypoxic PASMCs by regulating HSC70 glycosylation. These results further clarify the important mechanism of vascular remodeling in PH pathology.

10.
Cell Biosci ; 12(1): 9, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35090552

ABSTRACT

BACKGROUND: Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) is the main cause of hypoxic pulmonary hypertension (PH), and mitochondrial homeostasis plays a crucial role. However, the specific molecular regulatory mechanism of mitochondrial function in PASMCs remains unclear. METHODS: In this study, using the CCK8 assay, EdU incorporation, flow cytometry, Western blotting, co-IP, mass spectrometry, electron microscopy, immunofluorescence, Seahorse extracellular flux analysis and echocardiography, we investigated the specific involvement of apoptosis-inducing factor (AIF), a mitochondrial oxidoreductase in regulating mitochondrial energy metabolism and mitophagy in PASMCs. RESULTS: In vitro, AIF deficiency in hypoxia leads to impaired oxidative phosphorylation and increased glycolysis and ROS release because of the loss of mitochondrial complex I activity. AIF was also downregulated and ubiquitinated under hypoxia leading to the abnormal occurrence of mitophagy and autophagy through its interaction with ubiquitin protein UBA52. In vivo, treatment with the adeno-associated virus vector to overexpress AIF protected pulmonary vascular remodeling from dysfunctional and abnormal proliferation. CONCLUSIONS: Taken together, our results identify AIF as a potential therapeutic target for PH and reveal a novel posttranscriptional regulatory mechanism in hypoxia-induced mitochondrial dysfunction.

12.
Sheng Li Xue Bao ; 74(6): 885-893, 2022 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-36594377

ABSTRACT

Vascular calcification, the deposition of calcium in the arterial wall, is often linked to increased stiffness of the vascular wall. Vascular calcification is one of the important factors for high morbidity and mortality of cardiovascular and cerebrovascular diseases, as well as an important biomarker in atherosclerotic cardiovascular events, stroke and peripheral vascular diseases. The mechanism of vascular calcification has not been fully elucidated. Recently, non-coding RNAs have been found to play an important role in the process of vascular calcification. In this paper, the main types of non-coding RNAs and their roles involved in vascular smooth muscle cell calcification are reviewed, including the changes of osteoblast-related proteins, calcification signaling pathways and intracellular Ca2+.


Subject(s)
Muscle, Smooth, Vascular , Vascular Calcification , Humans , Muscle, Smooth, Vascular/metabolism , Vascular Calcification/genetics , Vascular Calcification/metabolism , Myocytes, Smooth Muscle/metabolism
13.
Bioresour Bioprocess ; 9(1): 55, 2022 May 18.
Article in English | MEDLINE | ID: mdl-38647589

ABSTRACT

With the increase in population growth and environmental pollution, the daily protein supply is facing great challenges. Single-cell protein (SCP) produced by microorganism fermentation is a good alternative for substituting plant- and animal-derived proteins. In this study, Paracoccus communis MA5 isolated from soil previously demonstrated an excellent ability to synthesize SCP directly from sodium formate. To investigate the central metabolic network of formic acid assimilation and protein synthesis, genome-scale analyses were performed. Genomic analysis showed that complete tetrahydrofolate cycle-, serine cycle-, glycolytic pathway-, tricarboxylic acid (TCA) cycle- and nitrogen metabolism-relevant genes were annotated in the genome. These pathways play key roles in the conversion of formic acid into proteins. Transcriptional analysis showed that sodium formate stress could stimulate the metabolic pathway in response to environmental stress, but weaken the sulfur metabolic pathway to inhibit amino acid synthesis, resulting in a decrease in protein content (30% vs 44%). However, under culture conditions with ammonium sulfate, metabolic pathways associated with protein synthesis were accelerated, causing an increase in protein content (53% vs 44%); while the tetrahydrofolate cycle associated with formic acid assimilation was inhibited, causing a 62.5% decrease in growth rate (OD600: 0.21 vs 0.56). These results provide evidence of protein synthesis from sodium formate in strain MA5 at the gene level and lay a theoretical foundation for the optimization of fermentation systems using formic acid as a carbon source.

15.
Sheng Li Xue Bao ; 73(4): 646-656, 2021 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-34405220

ABSTRACT

Pulmonary arterial hypertension (PAH) is a rare disease with a complex aetiology characterized by elevated pulmonary artery resistance, which leads to progressive right ventricular failure and ultimately death. The aberrant metabolism of arachidonic acid in the pulmonary vasculature plays a central role in the pathogenesis of PAH. The levels of 15-lipoxygenase (15-LO) and 15-hydroxyeicosatetraenoic acid (15-HETE) are elevated in the pulmonary arterial endothelial cells (PAECs), pulmonary smooth muscle cells (PASMCs) and fibroblasts of PAH patients. Under hypoxia condition, 15-LO/15-HETE induces pulmonary artery contraction, promotes the proliferation of PAECs and PASMCs, inhibits apoptosis of PASMCs, promotes fibrosis of pulmonary vessels, and then leads to the occurrence of PAH. Here, we review the research progress on the relationship between 15-LO/15-HETE and hypoxic PAH, in order to clarify the significance of 15-LO/15-HETE in hypoxic PAH.


Subject(s)
Arachidonate 15-Lipoxygenase , Pulmonary Arterial Hypertension , Cell Proliferation , Cells, Cultured , Endothelial Cells , Humans , Hydroxyeicosatetraenoic Acids , Hypoxia , Myocytes, Smooth Muscle , Pulmonary Artery
17.
Mol Ther ; 29(4): 1411-1424, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33429084

ABSTRACT

Pulmonary artery smooth muscle cells (PASMCs) proliferation caused by hypoxia is an important pathological process of pulmonary hypertension (PH). Prevention of PASMCs proliferation can effectively reduce PH mortality. Long non-coding RNAs (lncRNAs) are involved in the proliferation process. Recent evidence has demonstrated that functional peptides encoded by lncRNAs play important roles in cell pathophysiological process. Our previous study has demonstrated that lnc-Rps4l with high coding ability mediates the PASMCs proliferation under hypoxic conditions. We hypothesize in this study that a lnc-Rps4l-encoded peptide is involved in hypoxic-induced PASMCs proliferation. The presence of peptide 40S ribosomal protein S4 X isoform-like (RPS4XL) encoded by lnc-Rps4l in PASMCs under hypoxic conditions was confirmed by bioinformatics, immunofluorescence, and immunohistochemistry. Inhibition of proliferation by the peptide RPS4XL was demonstrated in hypoxic PASMCs by MTT, bromodeoxyuridine (BrdU) incorporation, and immunofluorescence assays. By using the bioinformatics, coimmunoprecipitation (coIP), and mass spectrometry, RPS6 was identified to interact with RPS4XL. Furthermore, lnc-Rps4l-encoded peptide RPS4XL inhibited the RPS6 process via binding to RPS6 and inhibiting RPS6 phosphorylation at p-RPS6 (Ser240+Ser244) phosphorylation site. These results systematically elucidate the role and regulatory network of Rps4l-encoded peptide RPS4XL in PASMCs proliferation. These discoveries provide potential targets for early diagnosis and a leading compound for treatment of hypoxic PH.


Subject(s)
Hypertension, Pulmonary/therapy , Peptides/genetics , RNA, Long Noncoding/genetics , Ribosomal Proteins/genetics , Animals , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Peptides/pharmacology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Vascular Remodeling/drug effects
18.
Mol Ther Nucleic Acids ; 22: 530-541, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33230455

ABSTRACT

Emerging evidence has suggested that circular RNAs (circRNAs) are involved in multiple physiological processes and participate in a variety of human diseases. However, the underlying biological function of circRNAs in pulmonary hypertension (PH) is still ambiguous. Herein, we investigated the implication and regulatory effect of a typical circRNA, CDR1as, in the pathological process of vascular calcification in PH. Human pulmonary artery smooth muscle cell (HPASMC) calcification was analyzed by western blotting, immunofluorescence, alizarin red S staining, alkaline phosphatase activity analysis, and calcium deposition quantification. CDR1as targets were identified by bioinformatics analysis and validated by dual-luciferase reporter and RNA antisense purification assays. We identified that CDR1as was upregulated in hypoxic conditions and promoted a phenotypic switch of HPASMCs from a contractile to an osteogenic phenotype. Moreover, microRNA (miR)-7-5p was shown to be a target of CDR1as, and calcium/calmodulin-dependent kinase II-delta (CAMK2D) and calponin 3 (CNN3) were suggested to be the putative target genes and regulated by CDR1as/miR-7-5p. The results showed that the CDR1as/miR-7-5p/CNN3 and CAMK2D regulatory axis mediates HPASMC osteoblastic differentiation and calcification induced by hypoxia. This evidence reveals an approach to the treatment of PH.

19.
Cell Death Dis ; 11(9): 764, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938905

ABSTRACT

Abnormal functional changes in pulmonary artery smooth muscle cells are the main causes of many lung diseases. Among, autophagy plays a crucial role. However, the specific molecular regulatory mechanism of autophagy in PASMCs remains unclear. Here, we first demonstrate that BCAT1 played a key role in the autophagy of hypoxic PASMCs and hypoxic model rats. BCAT1-induced activation and accumulation of the autophagy signaling proteins BECN1 and Atg5 by the endoplasmic reticulum (ER) stress pathway. Interestingly, we discovered that BCAT1 bound IRE1 on the ER to activate expression of its downstream pathway XBP-1-RIDD axis to activate autophagy. More importantly, we identified an RNA-binding protein, zinc finger protein 423, which promoted autophagy by binding adenylate/uridylate (AU)-rich elements in the BCAT1 mRNA 3'-untranslated region. Overall, our results identify BCAT1 as a potential therapeutic target for the clinical treatment of lung diseases and reveal a novel posttranscriptional regulatory mechanism and signaling pathway in hypoxia-induced PASMC autophagy.


Subject(s)
Autophagy/genetics , Hypoxia/metabolism , Myocytes, Smooth Muscle/metabolism , Transaminases/metabolism , Animals , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum Stress/physiology , RNA-Binding Proteins/metabolism , Rats, Wistar , Transcription Factors/metabolism
20.
Eur J Pharmacol ; 888: 173485, 2020 Dec 05.
Article in English | MEDLINE | ID: mdl-32805255

ABSTRACT

Autophagy is a major cause of pathological vascular remodeling under hypoxic pulmonary hypertension (PH). Sirtuin 3 (Sirt 3) has recently been reported to be involved in the regulation of autophagy, however, its role as an autophagy regulator during hypoxic PH, particularly the molecular mechanism, remains poorly understood. In the present study, Western blot, immunohistochemistry, immunofluorescence, bromodeoxyuridine incorporation and cell cycle analyses were performed to elucidate the underlying mechanism of hypoxia-induced autophagy and cell proliferation with respect to Sirt 3. We observed that the Sirt 3 expression was decreased under hypoxia and that Sirt 3 overexpression significantly inhibited the effects of hypoxia on autophagy. Next, we investigated the mechanistic role of microRNAs in Sirt 3-associated autophagy under hypoxic conditions, with luciferase reporter, microscale thermophoresis and RNA immunoprecipitation assays, results confirming that Sirt 3 is a direct target of miR-874-5p. Furthermore, miR-874-5p was upregulated following hypoxia, and miR-874-5p depletion in turn inhibited autophagy and consequently suppressed abnormal smooth muscle cell proliferation. These findings provide insight into the contribution of the miR-874-5p/Sirt 3 cascade with regard to changes in autophagy and proliferation associated with PH.


Subject(s)
Autophagy/physiology , Cell Proliferation/physiology , MicroRNAs/biosynthesis , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Sirtuins/biosynthesis , Animals , Cells, Cultured , Hypoxia/genetics , Hypoxia/metabolism , Male , MicroRNAs/genetics , Rats , Rats, Sprague-Dawley , Sirtuins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...