Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Huan Jing Ke Xue ; 45(2): 768-779, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471916

ABSTRACT

Relationships between land use and water quality of rivers and lakes vary spatially and temporally. These variations were analyzed using spatial analysis and mathematical statistical methods for the Suzhou Creek in Shanghai. Based on the data of water quality and land use in 2001, 2005, 2010, 2015, and 2020, five spatial scales (200, 500, 1 000, 2 000, and 5 000 m reach buffer) of the landscape pattern were extracted using correlation and redundancy analysis to explore the impact of land use composition and spatial pattern on water quality at different spatial and temporal scales. The results showed that: ① the water quality of Suzhou Creek has gradually improved in the past 20 years; other indicators were between Class II to Class IV in 2020 except TN, and TN was the main pollutant. ② The main land use type of the buffer zone was construction land, and the proportion of greenland and woodland showed a small growth trend. ③ The water quality was closely related to landscape pattern, showing temporal and spatial scale effects. On the time scale, indicators such as construction land, agricultural land, landscape dominance, aggregation, and diversity had significant correlations with various water quality parameters, and there was an inverse correlation in 2010 compared with that in other years for NH4+-N, TP, and TN. The landscape pattern in 2001 had the greatest explanation for water quality, with an explanation rate of 93.65%. The impact of greenland and woodland on water quality has begun to emerge in the past 10 years. ④ On the spatial scale, there were significant correlations between greenland and woodland, patch number, landscape shape index, diversity index, and water quality. There was a strong positive regulatory effect of greenland and woodland on NH4+-N, TP, and TN at the scale of 2 000 m. The patch number and landscape shape index had relatively strong regulatory effects on water quality on a larger spatial scale, whereas the Shannon diversity index had a better positive regulatory effect on water quality on a small scale. The landscape pattern within a buffer of 2 000 m had the highest interpretation degree for all factors, with an explanation rate of 68.47%. The study showed that rationally planning the proportion of greenland and woodland within the 2 000 m buffer zone and optimizing its landscape configuration is an important measure to purify the surface water quality of Suzhou Creek.

3.
Int J Ophthalmol ; 16(6): 915-920, 2023.
Article in English | MEDLINE | ID: mdl-37332537

ABSTRACT

AIM: To elucidate the relationship between macular sensitivity and time in range (TIR) obtained from continuous glucose monitoring (CGM) measures in diabetic patients with or without diabetic retinopathy (DR). METHODS: This was a cross-sectional study including 100 eyes of non-DR patients and 60 eyes of DR patients. An advanced microperimetry was used to quantitate the retinal mean sensitivity (MS) and fixation stability in central macula. TIR of 3.9-10.0 mmol/L was evaluated with CGM. Pearson coefficient analysis and multiple linear regression analysis were used to assess the correlation between TIR and retinal sensitivity. RESULTS: In a comparison of non-DR patients, significant differences (P<0.05) were found in HbA1c, TIR, coefficient of variation (CV), standard deviation of blood glucose (SDBG) and mean amplitude of glucose excursion (MAGE) values in DR patients. Besides, those DR patients had significantly poor best-corrected visual acuity (BCVA, logMAR, P=0.001). In terms of microperimetry parameters, retinal mean sensitivity (MS) and the percentages of fixation points located within 2° and 4° diameter circles were significantly decreased in the DR group (P<0.001, P<0.001, P=0.02, respectively). The bivariate contour ellipse area (BCEA) encompassing 68.2%, 95.4%, 99.6% of fixation points were all significantly increased in the DR group (P=0.01, P=0.006, P=0.01, respectively). Correlation analysis showed that MS were significantly correlated with HbA1c (P=0.01). TIR was positively correlated with MS (r=0.23, P=0.01). SDBG was negatively correlated with MS (r=-0.24, P=0.01) but there was no correlation between CV and MAGE with MS (P>0.05). A multivariable linear regression analysis was performed to prove that TIR and SDBG were both independent risk factors for MS reduction in the DR group. CONCLUSION: TIR is correlated with retinal MS reduction in DR patients, suggesting a useful option for evaluating DR progression.

4.
Article in English | MEDLINE | ID: mdl-36916026

ABSTRACT

Maintaining the concentrations of various ions in body fluids is critical to all living organisms. In this contribution, we designed a flexible microneedle patch coupled electrode array (MNP-EA) for the in situ multiplexed detection of ion species (Na+, K+, Ca2+, and H+) in tissue interstitial fluid (ISF). The microneedles (MNs) are mechanically robust for skin or cuticle penetration (0.21 N/needle) and highly swellable to quickly extract sufficient ISF onto the ion-selective electrochemical electrodes (∼6.87 µL/needle in 5 min). The potentiometric sensor can simultaneously detect these ion species with nearly Nernstian response in the ranges wider enough for diagnosis purposes (Na+: 0.75-200 mM, K+: 1-128 mM, Ca2+: 0.25-4.25 mM, pH: 5.5-8.5). The in vivo experiments on mice, humans, and plants demonstrate the feasibility of MNP-EA for timely and convenient diagnosis of ion imbalances with minimal invasiveness. This transdermal sensing platform shall be instrumental to home-based diagnosis and health monitoring of chronic diseases and is also promising for smart agriculture and the study of plant biology.

5.
Adv Sci (Weinh) ; 10(14): e2205862, 2023 05.
Article in English | MEDLINE | ID: mdl-36922751

ABSTRACT

The pathology of sepsis-associated encephalopathy (SAE) is related to astrocyte-inflammation associated with aquaporin-4 (AQP4). The aim here is to investigate the effects of AQP4 associated with SAE and reveal its underlying mechanism causing cognitive impairment. The in vivo experimental results reveal that AQP4 in peripheral blood of patients with SAE is up-regulated, also the cortical and hippocampal tissue of cecal ligation and perforation (CLP) mouse brain has significant rise in AQP4. Furthermore, the data suggest that AQP4 deletion could attenuate learning and memory impairment, attributing to activation of astrocytic autophagy, inactivation of astrocyte and downregulate the expression of proinflammatory cytokines induced by CLP or lipopolysaccharide (LPS). Furthermore, the activation effect of AQP4 knockout on CLP or LPS-induced PPAR-γ inhibiting in astrocyte is related to intracellular Ca2+ level and sodium channel activity. Learning and memory impairment in SAE mouse model are attenuated by AQP4 knockout through activating autophagy, inhibiting neuroinflammation leading to neuroprotection via down-regulation of Nav 1.6 channels in the astrocytes. This results in the reduction of Ca2+ accumulation in the cell cytosol furthermore activating the inhibition of PPAR-γ signal transduction pathway in astrocytes.


Subject(s)
Cognitive Dysfunction , Sepsis-Associated Encephalopathy , Animals , Mice , Astrocytes/metabolism , Autophagy , Cognitive Dysfunction/etiology , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/pharmacology , Sepsis-Associated Encephalopathy/metabolism , Humans
6.
J Neurosci ; 42(43): 8169-8183, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36100398

ABSTRACT

Aquaporin-4 (AQP4) is characterized by the formation of orthogonal arrays of particles (OAPs) comprising its M1 and M23 isoforms in the plasma membrane. However, the biological importance of OAP formation is obscure. Here, we developed an OAP depolymerization male mouse model by transgenic knock-in of an AQP4-A25Q mutation. Analyses of the mutant brain tissue using blue native polyacrylamide gel electrophoresis, super-resolution imaging, and immunogold electron microscopy revealed remarkably reduced OAP structures and glial endfeet localization of the AQP4-A25Q mutant protein without effects on its overall mRNA and protein expression. AQP4A25Q/A25Q mice showed better survival and neurologic deficit scores when cerebral edema was induced by water intoxication or middle cerebral artery occlusion/reperfusion. The brain water content and swelling of pericapillary astrocytic endfeet processes in AQP4A25Q/A25Q mice were significantly reduced, functionally supporting decreased AQP4 protein expression at the blood-brain barrier. The infarct volume and neuronal damage were also reduced in AQP4A25Q/A25Q mice in the middle cerebral artery occlusion/reperfusion model. Astrocyte activation in the brain was alleviated in AQP4A25Q/A25Q mice, which may be associated with decreased cell swelling. We conclude that the OAP structure of AQP4 plays a key role in its polarized expression in astrocytic endfeet processes at the blood-brain barrier. Therefore, our study provided new insights into intervention of cerebral cellular edema caused by stroke and traumatic brain injury through regulating AQP4 OAP formation.SIGNIFICANCE STATEMENT Aquaporin-4 (AQP4) is characterized by orthogonal arrays of particles (OAPs) comprising the M1 and M23 isoforms in the membrane. Here, an OAP depolymerization male mouse model induced by AQP4-A25Q mutation was first established, and the functions of OAP depolymerization in cerebral edema have been studied. The results revealed that AQP4 lost its OAP structure without affecting AQP4 mRNA and protein levels in AQP4-A25Q mice. AQP4-A25Q mutation mice has neuroprotective effects on cerebral edema induced by water intoxication and middle cerebral artery occlusion/reperfusion through relieving the activation of astrocytes and suppressed microglia-mediated neuroinflammation. We concluded that the OAP structure of AQP4 plays a key role in its polarized expression in astrocytic endfeet processes at the blood-brain barrier. Therefore, our study provided new insights into intervention of cerebral cellular edema caused by stroke and traumatic brain injury through regulating AQP4 OAP formation.


Subject(s)
Aquaporin 4 , Brain Edema , Brain Injuries, Traumatic , Neuroprotective Agents , Water Intoxication , Animals , Male , Mice , Aquaporin 4/genetics , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain Edema/genetics , Brain Edema/metabolism , Brain Injuries, Traumatic/metabolism , Cell Membrane/metabolism , Edema/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neuroprotective Agents/metabolism , Point Mutation , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Water Intoxication/metabolism
7.
Bioengineered ; 13(5): 13607-13621, 2022 05.
Article in English | MEDLINE | ID: mdl-35765893

ABSTRACT

Many researches indicated that long non-coding RNAs (lncRNAs) were involved in the malignant progression of tumors, including Adrenocortical Carcinoma (ACC). However, as for most lncRNAs, their biological behaviors and molecular mechanism remain unclear in ACC. In the present research, weighted gene co-expression network analysis (WGCNA) was used to identify pathologically relevant gene, including lncRNAs. By comparing their expressions in GSE61359 tumors and normal controls, long intergenic non-protein coding RNA 1234 (LINC01234) was selected to investigate the clinical significance, biological function, and mechanism in ACC. Data mining revealed that LINC01234 expression was significantly up-regulated in ACC patients, and a shorter survival time presents in patients with higher LINC01234 expression compared to that in patients with lower LINC01234 expression. Further, LINC01234 silencing resulted in cells growth arrest in vitro and in vivo. Mechanism studies suggested that LINC01234 silencing induced cell cycle arrest, and bromodomain-containing protein 4 (BRD4) overexpression could restore this phenomenon. Further research showed that LINC01234 could mediate BRD4 expression through competitively sequestering microRNA (miR)-140-3p, as evidenced by the positive correlation of LINC01234 with BRD4 and inverse correlation with miR-140-3p expression. Luciferase activity assay also verified the targeting relationship between LINC01234, BRD4 and miR-140-3p. And up-regulated LINC01234 in ACC cells significantly reversed the degradation of BRD4 by miR-140-3p. Collectively, we deduce that LINC01234 functions as a ceRNA to regulate BRD4 expression by sponging miR-140-3p in ACC progress. Our findings have the potential to provide a new target for the diagnosis and treatment of ACC.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Cell Cycle Proteins , MicroRNAs , RNA, Long Noncoding , Transcription Factors , Adrenal Cortex Neoplasms/genetics , Adrenal Cortex Neoplasms/metabolism , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/genetics , Adrenocortical Carcinoma/metabolism , Cell Cycle Checkpoints/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Biosens Bioelectron ; 212: 114412, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35623253

ABSTRACT

Skin Interstitial Fluid (ISF) is an alternative source for biomarkers. Herein, a highly swellable microneedle patch (MNP) to rapidly extract ISF painlessly and bloodlessly is presented. The MNP is made of crosslinked methacrylated hyaluronic acid (MeHA) and dissolvable hyaluronic acid (HA) with the optimal balance of mechanical strength (0.6 N/MN) and absorption capability (16.22 µL in 20 min). Incorporated with wax-patterned and sensing-reagent-decorated test paper (TP) for multiplexed colorimetric detection of metabolites (glucose, lactate, cholesterol, and pH), this TP-MNP biosensor gives rapid color change in biomarker concentration-dependent manner based on specific enzymatic reactions, whereby allowing diagnosis by the naked eye or quantitative RGB analysis. Both the in vitro and in vivo experiments demonstrate the feasibility of TP-MNPs to detect multiple biomarkers in skin interstitial fluid within minutes. Such convenient and self-administrable profiling of metabolites shall be instrumental for home-based long-term monitoring and management of metabolic diseases.


Subject(s)
Biosensing Techniques , Colorimetry , Biomarkers , Hyaluronic Acid , Needles , Skin
9.
Aging Cell ; 21(5): e13593, 2022 05.
Article in English | MEDLINE | ID: mdl-35353937

ABSTRACT

Aberrant increases in neuronal network excitability may contribute to cognitive deficits in Alzheimer's disease (AD). However, the mechanisms underlying hyperexcitability of neurons are not fully understood. Voltage-gated sodium channels (VGSC or Nav), which are involved in the formation of excitable cell's action potential and can directly influence the excitability of neural networks, have been implicated in AD-related abnormal neuronal hyperactivity and higher incidence of spontaneous non-convulsive seizures. Here, we have shown that the reduction of VGSC α-subunit Nav1.6 (by injecting adeno-associated virus (AAV) with short hairpin RNA (shRNA) into the hippocampus) rescues cognitive impairments and attenuates synaptic deficits in APP/PS1 transgenic mice. Concurrently, amyloid plaques in the hippocampus and levels of soluble Aß are significantly reduced. Interfering with Nav1.6 reduces the transcription level of ß-site APP-cleaving enzyme 1 (BACE1), which is Aß-dependent. In the presence of Aß oligomers, knockdown of Nav1.6 reduces intracellular calcium overload by suppressing reverse sodium-calcium exchange channel, consequently increasing inactive NFAT1 (the nuclear factor of activated T cells) levels and thus reducing BACE1 transcription. This mechanism leads to a reduction in the levels of Aß in APP/PS1 transgenic mice, alleviates synaptic loss, improves learning and memory disorders in APP/PS1 mice after downregulating Nav1.6 in the hippocampus. Our study offers a new potential therapeutic strategy to counteract hippocampal hyperexcitability and subsequently rescue cognitive deficits in AD by selective blockade of Nav1.6 overexpression and/or hyperactivity.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Calcium , Disease Models, Animal , Mice , Mice, Transgenic
11.
Front Pharmacol ; 12: 704715, 2021.
Article in English | MEDLINE | ID: mdl-34675802

ABSTRACT

Background: Intervention of neuroinflammation in central nervous system (CNS) represents a potential therapeutic strategy for a host of brain disorders. The scorpion Buthus martensii Karsch (BmK) and its venom have long been used in the Orient to treat inflammation-related diseases such as rhumatoid arthritis and chronic pain. Scorpion venom heat-resistant peptide (SVHRP), a component from BmK venom, has been shown to reduce seizure susceptibility in a rat epileptic model and protect against cerebral ischemia-reperfusion injury. As neuroinflammation has been implicated in chronic neuronal hyperexcitability, epileptogenesis and cerebral ischemia-reperfusion injury, the present study aimed to investigate whether SVHRP has anti-inflammatory property in brain. Methods: An animal model of neuroinflammation induced by lipopolysacchride (LPS) injection was employed to investigate the effect of SVHRP (125 µg/kg, intraperitoneal injection) on inflammagen-induced expression of pro-inflammatory factors and microglia activation. The effect of SVHRP (2-20 µg/ml) on neuroinflammation was further investigated in primary brain cell cultures containing microglia as well as the immortalized BV2 microglia culture stimulated with LPS. Real-time quantitative PCR were used to measure mRNA levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6 in hippocampus of animals. Protein levels of TNF-α, iNOS, P65 subunit of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) were examined by ELISA or western blot. Microglia morphology in animal hippocampus or cell cultures and cellular distribution of p65 were shown by immunostaining. Results: Morphological study demonstrated that activation of microglia, the main component that mediates the neuroinflammatory process, was inhibited by SVHRP in both LPS mouse and cellular model. Our results also showed dramatic increases in the expression of iNOS and TNF-α in hippocampus of LPS-injected mice, which was significantly attenuated by SVHRP treatment. In vitro results showed that SVHRP attenuated LPS-elicited expression of iNOS and TNF-α in different cultures without cell toxicity, which might be attributed to suppression of NF-κB and MAPK pathways by SVHRP. Conclusion: Our study demonstrates that SVHRP is able to inhibit neuroinflammation and microglia activation, which may underlie the therapeutic effects of BmK-derived materials, suggesting that BmK venom could be a potential source for CNS drug development.

12.
World J Gastroenterol ; 27(22): 2944-2962, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34168400

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 is a global pandemic and poses a major threat to human health worldwide. In addition to respiratory symptoms, COVID-19 is usually accompanied by systemic inflammation and liver damage in moderate and severe cases. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the expression of antioxidant proteins, participating in COVID-19-mediated inflammation and liver injury. Here, we show the novel reciprocal regulation between NRF2 and inflammatory mediators associated with COVID-19-related liver injury. Additionally, we describe some mechanisms and treatment strategies.


Subject(s)
COVID-19 , Inflammation Mediators , Liver Diseases/virology , NF-E2-Related Factor 2 , COVID-19/pathology , Humans , Inflammation Mediators/metabolism , Liver/metabolism , Liver/pathology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , SARS-CoV-2 , Signal Transduction
13.
Chin Med J (Engl) ; 134(11): 1289-1298, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33928916

ABSTRACT

BACKGROUND: The significant morbidity and mortality resulted from the infection of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) call for urgent development of effective and safe vaccines. We report the immunogenicity and safety of an inactivated SARS-CoV-2 vaccine, KCONVAC, in healthy adults. METHODS: Phase 1 and phase 2 randomized, double-blind, and placebo-controlled trials of KCONVAC were conducted in healthy Chinese adults aged 18 to 59 years. The participants in the phase 1 trial were randomized to receive two doses, one each on Days 0 and 14, of either KCONVAC (5 or 10 µg/dose) or placebo. The participants in the phase 2 trial were randomized to receive either KCONVAC (at 5 or 10 µg/dose) or placebo on Days 0 and 14 (0/14 regimen) or Days 0 and 28 (0/28 regimen). In the phase 1 trial, the primary safety endpoint was the proportion of participants experiencing adverse reactions/events within 28 days following the administration of each dose. In the phase 2 trial, the primary immunogenicity endpoints were neutralization antibody seroconversion and titer and anti-receptor-binding domain immunoglobulin G seroconversion at 28 days after the second dose. RESULTS: In the phase 1 trial, 60 participants were enrolled and received at least one dose of 5-µg vaccine (n = 24), 10-µg vaccine (n = 24), or placebo (n = 12). In the phase 2 trial, 500 participants were enrolled and received at least one dose of 5-µg vaccine (n = 100 for 0/14 or 0/28 regimens), 10-µg vaccine (n = 100 for each regimen), or placebo (n = 50 for each regimen). In the phase 1 trial, 13 (54%), 11 (46%), and seven (7/12) participants reported at least one adverse event (AE) after receiving 5-, 10-µg vaccine, or placebo, respectively. In the phase 2 trial, 16 (16%), 19 (19%), and nine (18%) 0/14-regimen participants reported at least one AE after receiving 5-, 10-µg vaccine, or placebo, respectively. Similar AE incidences were observed in the three 0/28-regimen treatment groups. No AEs with an intensity of grade 3+ were reported, expect for one vaccine-unrelated serious AE (foot fracture) reported in the phase 1 trial. KCONVAC induced significant antibody responses; 0/28 regimen showed a higher immune responses than that did 0/14 regimen after receiving two vaccine doses. CONCLUSIONS: Both doses of KCONVAC are well tolerated and able to induce robust immune responses in healthy adults. These results support testing 5-µg vaccine in the 0/28 regimen in an upcoming phase 3 efficacy trial. TRIAL REGISTRATION: http://www.chictr.org.cn/index.aspx (No. ChiCTR2000038804, http://www.chictr.org.cn/showproj.aspx?proj=62350; No. ChiCTR2000039462, http://www.chictr.org.cn/showproj.aspx?proj=63353).


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19 Vaccines , Double-Blind Method , Humans , Vaccines, Inactivated/adverse effects
14.
Front Oncol ; 11: 569295, 2021.
Article in English | MEDLINE | ID: mdl-33747905

ABSTRACT

Resveratrol (RSV) is known to possess anticancer properties in many types of cancers like breast cancer, in which POLD1 may serve as a potential target. However, the anticancer mechanism of RSV on triple negative breast cancer (TNBC) remains unclear. In the present study, the antitumor effects and mechanism of RSV on TNBC cells were analyzed by RNA sequencing (RNA-seq), which was then verified via cell counting kit-8 (CCK8), immunofluorescence, immunohistochemistry, Western Blot (WB), flow cytometry, and hematoxylin-eosin (HE) staining. According to the corresponding findings, the survival rate of MDA-MB-231 cells gradually decreased as RSV treatment concentration increased. The RNA-seq analysis results demonstrated that genes affected by RSV treatment were mainly involved in apoptosis and the p53 signaling pathway. Moreover, apoptosis of MDA-MB-231 cells induced by RSV was observed to be mainly mediated by POLD1. When treated with RSV, the expression levels of full length PARP1, PCNA, and BCL-2 were found to be significantly reduced, and the expression level of Cleaved-PARP1 as well as Cleaved-Caspase3 increased significantly. Additionally, the mRNA expression of POLD1 was significantly reduced after treatment with RSV, and the protein expression level was also inhibited by RSV in a concentration-dependent manner. The prediction of domain interaction suggested that RSV may bind to at least five functional domains of the POLD1 protein (6s1m, 6s1n, 6s1o, 6tny and 6tnz). Furthermore, after RSV treatment, the anti-apoptotic index (PCNA, BCL-2) of MDA-MB-231 cells was found to decrease while the apoptosis index (caspase3) increased. Moreover, the overexpression of POLD1 reduced the extent of apoptosis observed in MDA-MB-231 cells following RSV treatment. Moreover, animal experimental results showed that RSV had a significant inhibitory effect on the growth of live tumors, while POLD1 overexpression was shown to antagonize this inhibitory effect. Accordingly, this study's findings reveal that RSV may promote the apoptosis of TNBC cells by reducing the expression of POLD1 to activate the apoptotic pathway, which may serve as a potential therapy for the treatment of TNBC.

15.
Front Aging Neurosci ; 12: 145, 2020.
Article in English | MEDLINE | ID: mdl-32625077

ABSTRACT

Steroid receptor coactivator 1 (SRC-1) is the key coactivator because of its transcriptional activity. Previous studies have shown that SRC-1 is abundant in the hippocampus and has been implicated in cognition. SRC-1 is also related to some major risk factors for Alzheimer's disease (AD), such as a decline in estrogen and aging, however, whether SRC-1 is involved in the pathogenesis of AD remains unclear. In this study, we established SRC-1 knockout in AD mice by cross breeding SRC-1-/- mutant mice with APP/PS1 transgenic mice, and investigated the expression of some synaptic proteins, the amyloid ß (Aß) deposition, and activation of astrocytes and microglia in the hippocampus of APP/PS1×SRC-1-/- mice. The results showed that SRC-1 knockout neither affects the Aß plaque and activation of glia, nor changes the expression of synaptic proteins in AD model mice. The above results suggest that the complete deletion of SRC-1 in the embryo exerts no effect on the pathogenesis of APP/PS1 mice. Nevertheless, this study could not eliminate the possible role of SRC-1 in the development of AD due to the lack of observation of other events in AD such as tau hyperphosphorylation and the limitation of the animal model employed.

16.
Colloids Surf B Biointerfaces ; 189: 110844, 2020 May.
Article in English | MEDLINE | ID: mdl-32044675

ABSTRACT

Drug distribution in polymer dissolvable microneedles (MNs) is essential for enhancing the efficiency of drug delivery. In the present work, multiscale simulation was applied to study the interactions between polymer and drug molecules, which may influence the drug distribution in the MNs. In this study, Hyaluronic acid (HA) and Polyvinyl alcohol (PVA) were used to fabricate the MNs and sulfonhodamine B (SRB) was selected as the model drug. Firstly, from the quantum chemical calculations, the global electronegativity of HA (3.786 eV) is stronger than that of PVA (2.435 eV), which means that HA owns stronger electronegativity. The Flory-Huggins parameter of HA-SRB is -1.16 which is lower than that of PVA-SRB (53.51), indicating that HA has better compatibility with SRB molecules than PVA. From molecular dynamic simulations, the binding energy of HA-SRB is 93.52 kcal/mol which is much higher than that of PVA-SRB (-2.40 kcal/mol), meaning that HA is easier than PVA to combined with SRB. The mesoscale-based dissipative particle dynamics (DPD) simulations were applied to visualize the diffusion behavior of SRB and the swelling properties of the polymers. All the results indicated that SRB has a lower diffusion coefficient in PVA solution than that in HA solution, which may prevent the diffusion of drug from MN tips to the bases, facilitating the fabrication of MNs with drug concentrated MN tips. Finally, the SRB loaded PVA and HA MNs were prepared and the experimental results are consisted with the simulation results.


Subject(s)
Hyaluronic Acid/chemistry , Molecular Dynamics Simulation , Polyvinyl Alcohol/chemistry , Rhodamines/chemistry , Drug Delivery Systems , Particle Size , Surface Properties
17.
Neurosci Bull ; 36(3): 243-253, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31502213

ABSTRACT

Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies have shown that SVHRP is neuroprotective in models of Alzheimer's disease and Parkinson's disease. The present study aimed to explore the potential neuroprotective effects of SVHRP on cerebral ischemia/reperfusion (I/R) injury, using a mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a cellular model of oxygen-glucose deprivation/reoxygenation (OGD/R). Our results showed that SVHRP treatment decreased the neurological deficit scores, edema formation, infarct volume and neuronal loss in the MCAO/R mice, and protected primary neurons against OGD/R insult. SVHRP pretreatment suppressed the alterations in protein levels of N-methyl-D-aspartate receptors (NMDARs) and phosphorylated p38 MAPK as well as some proinflammatory factors in both the animal and cellular models. These results suggest that SVHRP has neuroprotective effects against cerebral I/R injury, which might be associated with inhibition of the NMDA-MAPK-mediated excitotoxicity.


Subject(s)
Cerebral Cortex/drug effects , Infarction, Middle Cerebral Artery/complications , Neurons/drug effects , Neuroprotective Agents/pharmacology , Peptides/pharmacology , Psychomotor Performance/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects , Reperfusion Injury/prevention & control , Scorpion Venoms/pharmacology , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/drug effects , Animals , Animals, Newborn , Behavior, Animal/drug effects , Brain Edema/prevention & control , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL
18.
J Ophthalmol ; 2019: 6043612, 2019.
Article in English | MEDLINE | ID: mdl-31885890

ABSTRACT

Purpose. To evaluate the neutrophil/lymphocyte ratio (NLR) and the platelet/lymphocyte ratio(PLR) value in the development of branch retinal vein occlusion (BRVO)patients. METHODS: 81 patients with BRVO and 81 age and sex-matched subjects were recruited as the control group. The BRVO diagnosis was confirmed under comprehensive ophthalmologic examinations. NLR and PLR parameters obtained from peripheral blood were recorded. RESULTS: Both the mean NLR and PLR was significantly higher in the BRVO group compared with the control group (p < 0.001). In ROC analysis, the AUC for NLR was 0.82, and NLR of >2.48 predicted BRVO with a sensitivity of 58% and specificity of 98%. The AUC for PLR was 0.78, and PLR of >110.2 predicted BRVO with a sensitivity of 72% and specificity of 72%. CONCLUSION: The current study demonstrated that BRVO patients had increased NLR and PLR levels compared with control subjects. The NLR and PLR may be used as independent predictors for identifying risk for the development of BRVO.

19.
Drug Deliv Transl Res ; 9(6): 1133-1142, 2019 12.
Article in English | MEDLINE | ID: mdl-31292933

ABSTRACT

There is an increasing concern on the drug loading capacity of microneedles (MNs) to meet higher drug dosage requirement. The present study describes the fabrication of modified rapidly separating polyvinyl alcohol (PVA)-based MNs (RS-P-MNs) with high drug loading using a mechanical agitation process. The drugs encapsulated within the PVA polymer gel by mechanical agitation served as an encapsulating agent for drugs that provide a high drug loading capacity and also release of drugs in a controlled manner. The various parameters such as microscopic analysis, atomic force microscopy (AFM), drug loading, drug delivery efficiency, mechanical test, skin penetration ability, and in vitro and in vivo analyses indicate the great potential of the RS-P-MNs. The maximum drug loading capacity of RS-P-MNs was measured to be approximately 900 ng per microneedle, which was almost a hundred times than the traditional drug encapsulating mode. The in vitro and in vivo results suggested that the controlled release of drugs is due to the encapsulating mode (mechanical agitation) of drugs. The prepared RS-P-MNs with high drug loading in this study provided a gentle and controlled release of drugs instead of the robust release of drugs from traditional MNs. Graphical abstract.


Subject(s)
Drug Delivery Systems , Microinjections , Needles , Animals , Drug Liberation , Female , Fluorescein-5-isothiocyanate/administration & dosage , Fluorescein-5-isothiocyanate/chemistry , Mice, Inbred BALB C , Polyvinyl Alcohol/chemistry , Skin/metabolism , Swine
20.
Int J Pharm ; 567: 118489, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31276760

ABSTRACT

This study systematically demonstrated the antigenicity kinetics of HBV vaccine microneedles (MNs) during the fabrication, application and storage. To improve the stability of HBsAg in a microneedle patch, several selected saccharides were added to the MN formulations as stabilizers. According to the experimental data, no significant decrease of the bio-activity of HBsAg antigen was found during the microneedle fabrication process. And then immune effects of HBsAg added with different sugars were tested. Chitosan and trehalose loaded HBsAg MNs enhanced the antibody levels to approximately 1.5-fold and 2-fold of the plain HBsAg MNs respectively while sucrose and glucose were not obviously beneficial. During the short-term storage under 60 °C, the antigenicity of HBsAg MNs encapsulated with glucose and chitosan declined sharply in 24 h and hardly left after 7 days. As for the groups of HBsAg MNs added with sucrose and trehalose, approximately 90% of HBsAg initial antigenicity maintained, which could be attributed to the protective function of non-reductive disaccharides. As for the long-term storage experiments, the pharmacological activity of HBsAg antigen protected by sucrose and trehalose slightly reduced in 3 months except for the samples under 60 °C. In extreme condition, trehalose performed even better protection function than sucrose, of which the antigenicity of HBsAg in MNs left approximately 81% and 63% of its initial, respectively. These results confirmed that trehalose loaded HBsAg MNs enabled stable encapsulation and storage of HBsAg antigen and realized reasonable enhancement of immune effect in a relatively painless, safe, and convenient manner.


Subject(s)
Hepatitis B Surface Antigens/administration & dosage , Hepatitis B Vaccines/administration & dosage , Trehalose/administration & dosage , Animals , Chitosan/administration & dosage , Drug Stability , Female , Hepatitis B Antibodies/blood , Kinetics , Mice, Inbred BALB C , Microinjections , Needles , Sucrose/administration & dosage , Transdermal Patch
SELECTION OF CITATIONS
SEARCH DETAIL
...