Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 287: 154062, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37540924

ABSTRACT

Okra (Abelmoschus esculentus L.) is a tropical crop species, and its growth and development are severely affected by cold stress. Recent studies have identified a potential association between WRKY transcription factors and the cold response mechanism of crops. In this study, the AeWRKY32 transcription factor that encodes 482 amino acids was amplified from A. esculentus, and its expression level was found to be the highest in the okra flower. AeWRKY32 localized to the nucleus and displayed transcriptional activation capability. Under normal conditions, overexpression of AeWRKY32 induced anthocyanin accumulation, with higher expression levels of AtCHS1, AtCHI4, AtF3H1, and AtDFR2 in transgenic Arabidopsis. Under cold stress, anthocyanin levels were further elevated in transgenic Arabidopsis plants. At the same time, AeWRKY32 overexpression promoted ABA biosynthesis, inhibited H2O2 and O2- generation, induced stomatal closure, reduced electrolyte leakage, and thus improved the cold resistance of transgenic Arabidopsis. Furthermore, under cold stress, the expression profiles of AtCOR413, AtCOR15B, AtCBF1, and AtCBF2 were upregulated in transgenic Arabidopsis. Overall, our study provides evidence that AeWRKY32 serves as a crucial regulator in both anthocyanin accumulation and cold tolerance of transgenic Arabidopsis. Our findings could provide insights into the molecular mechanism linking AeWRKYs to plant cold tolerance.


Subject(s)
Abelmoschus , Arabidopsis , Arabidopsis/metabolism , Abelmoschus/metabolism , Anthocyanins/metabolism , Plant Proteins/metabolism , Hydrogen Peroxide/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant , Stress, Physiological , Cold Temperature
2.
Front Pharmacol ; 13: 825667, 2022.
Article in English | MEDLINE | ID: mdl-35222040

ABSTRACT

Pulmonary fibrosis (PF) is a clinically common disease caused by many factors, which will lead to lung function decline and even respiratory failure. Jingyin granule has been confirmed to have anti-inflammatory and antiviral effects by former studies, and has been recommended for combating H1N1 influenza A virus (H1N1) infection and Coronavirus disease 2019 (COVID-19) in China. At present, studies have shown that patients with severe COVID-19 infection developed lung fibrotic lesions. Although Jingyin granule can improve symptoms in COVID-19 patients, no study has yet reported whether it can attenuate the process of PF. Here, we explored the underlying mechanism of Jingyin granule against PF by network pharmacology combined with in vitro experimental validation. In the present study, the active ingredients as well as the corresponding action targets of Jingyin granule were firstly collected by TCMSP and literature data, and the disease target genes of PF were retrieved by disease database. Then, the common targets were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and then a PPI network and an ingredient-target network were constructed. Next, UPLC-MS was used to isolate and identify selected representative components in Jingyin granule. Finally, LPS was used to induce the A549 cell fibrosis model to verify the anti-PF effect of Jingyin granule in vitro. Our results indicated that STAT3, JUN, RELA, MAPK3, TNF, MAPK1, IL-6, and AKT1 were core targets of action and bound with good affinity to selected components, and Jingyin granule may alleviate PF progression by Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3), the mammalian nuclear factor-κB (NF-κB), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), tumor necrosis factor (TNF), and the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathways. Overall, these results provide future therapeutic strategies into the mechanism study of Jingyin granule on PF.

3.
Front Pharmacol ; 12: 733618, 2021.
Article in English | MEDLINE | ID: mdl-34658873

ABSTRACT

Pulmonary fibrosis, a common outcome of pulmonary interstitial disease of various different etiologies, is one of the most important causes of respiratory failure. Houttuynia cordata Thunb. (family: Saururaceae) (H. cordata), as has been reported, is a Chinese herbal medicine commonly used to treat upper respiratory tract infection and bronchitis. Our previous study has proven that sodium houttuyfonate (an additional compound from sodium bisulfite and houttuynin) had beneficial effects in the prevention of pulmonary fibrosis (PF) induced by bleomycin (BLM) in mice. In the present study, network pharmacology was used to investigate the efficiency and potential mechanisms of H. cordata in PF treatment. Upon manual collection from the literature and databases such as TCMSP and TCM-ID, 10 known representative ingredients of H. cordata species were screened. Then, the prediction of the potential active ingredients, action targets, and signaling pathways were conducted through the Gene Ontology (GO), protein-protein interaction (PPI),and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The results of network pharmacology prediction suggested that H. cordata may act through multiple signaling pathways to alleviate PF, including the phosphatidylinositol 3-kinase-protein kinase B (PI3K/AKT) pathways, mitogen-activated protein kinase (MAPK) pathways, the tumor necrosis factor (TNF) pathways, and interleukin-17 (IL-17) signaling pathways. Molecular docking experiments showed that the chemical constituents of H. cordata had good affinity with TNF, MAPK1, and AKT1, and using lipopolysaccharide (LPS)-induced A549 cells, a model was established to verify the anti-pulmonary fibrosis effects and related mechanisms of H. cordata-relevant constituents. Finally, these evidences collectively suggest H. cordata may alleviate PF progression via PI3K/Akt, MAPK, and TNF signaling pathways and provide novel insights to verify the mechanism of H. cordata in the treatment of PF.

4.
Front Pharmacol ; 12: 596492, 2021.
Article in English | MEDLINE | ID: mdl-33716736

ABSTRACT

Pulmonary fibrosis (PF) could severely disrupt the normal lung architecture and function with fatal consequences. Currently, there is no effective treatment for PF or idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the effects of Sodium Houttuyfonate (SH) on bleomycin (BLM) induced PF mice model. Our results indicated that SH could attenuate BLM induced lung injury by reducing the inflammation, fibrogenesis and lung/body weight ratio. The proposed mechanisms for the protective effects of SH include: 1) improvement of pulmonary function in BLM mice, for instance, it can elevate the vital capacity (VC), increase the forced expiratory flow at 50% of forced vital capacity (FEF50) and improve other pulmonary function indices; 2) inhibition of collagen formation in BLM mice; 3) attenuation of the elevation of inflammatory cytokines, such as interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α), which are triggered by BLM administration; 4) reduction of the mRNA level and protein production of transforming growth factor-ß1 (TGF-ß1) in BLM mice. Furthermore, it was found that the protective effects of SH against BLM induced PF in mice was comparable to that of prednisone acetate (PA) tablets, a widely used drug for immunological diseases. Although Houttuynia Cordata Thunb has been widely used in China for lung infection and inflammation, the mechanism has not yet been fully elucidated. Our study provides the evidence that SH is an effective compound against pulmonary injury, irritation and fibrogenesis.

5.
J Integr Plant Biol ; 50(6): 733-41, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18713414

ABSTRACT

APase activity is involved in regulating many physiological and developmental events by affecting the resorption process. In this study, we investigate the role of APase activity in tuber development in potato. APase activities were mainly localized in cytoplasm, gaps among cells and stroma of amyloplasts of parenchyma cells at the stage of tuber swelling. AP1, encoding a putative APase, was also highly expressed in swelling tubers and a low level of expression was observed in elongated stolons and matured tubers. Inhibition of APase activity by applying Brefeldin A, an inhibitor of APase production and secretion, significantly suppressed the tuber swelling and moderately affected the stolon elongation and the tuberization frequency. During tuber development, sucrose serves as the main soluble sugar for long-distance transportation and resorption. Moreover, inhibition of APase activity by Brefeldin A markedly reduced the sucrose content in tubers and further decreased the starch accumulation, suggesting that the function of APase in regulating the tuber swelling might be at least partially mediated by the sugar resorption. Exogenous sucrose treatments further indicate the important role of sucrose-mediated sugar resorption in tuber swelling. These results suggest that the APase activity might affect the tuber swelling by partially regulating the sucrose-mediated sugar resorption.


Subject(s)
Acid Phosphatase/metabolism , Carbohydrate Metabolism , Plant Tubers/enzymology , Solanum tuberosum/enzymology , Sucrose/metabolism , Acid Phosphatase/antagonists & inhibitors , Acid Phosphatase/genetics , Carbohydrate Metabolism/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Tubers/cytology , Plant Tubers/drug effects , Plant Tubers/growth & development , Solanum tuberosum/cytology , Solanum tuberosum/genetics , Solanum tuberosum/growth & development , Starch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...