Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38841753

ABSTRACT

Methanogenic archaea, characterized by their cell membrane lipid molecules consisting of isoprenoid chains linked to glycerol-1-phosphate via ether bonds, exhibit exceptional adaptability to extreme environments. However, this distinct lipid architecture also complicates the interactions between methanogenic archaea and nanoparticles. This study addresses this challenge by exploring the interaction and transformation of selenium nanoparticles (SeNPs) within archaeal Methanosarcina acetivorans C2A. We demonstrated that the effects of SeNPs are highly concentration-dependent, with chemical stimulation of cellular processes at lower SeNPs concentrations as well as oxidative stress and metabolic disruption at higher concentrations. Notably, we observed the formation of a protein corona on SeNPs, characterized by the selective adsorption of enzymes critical for methylotrophic methanogenesis and those involved in selenium methylation, suggesting potential alterations in protein function and metabolic pathways. Furthermore, the intracellular transformation of SeNPs into both inorganic and organic selenium species highlighted their bioavailability and dynamic transformation within archaea. These findings provide vital insights into the nano-bio interface in archaeal systems, contributing to our understanding of archaeal catalysis and its broader applications.

2.
Proc Natl Acad Sci U S A ; 121(4): e2317058121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38232281

ABSTRACT

Integration of methanogenic archaea with photocatalysts presents a sustainable solution for solar-driven methanogenesis. However, maximizing CH4 conversion efficiency remains challenging due to the intrinsic energy conservation and strictly restricted substrates of methanogenic archaea. Here, we report a solar-driven biotic-abiotic hybrid (biohybrid) system by incorporating cadmium sulfide (CdS) nanoparticles with a rationally designed methanogenic archaeon Methanosarcina acetivorans C2A, in which the glucose synergist protein and glucose kinase, an energy-efficient route for glucose transport and phosphorylation from Zymomonas mobilis, were implemented to facilitate nonnative substrate glucose for methanogenesis. We demonstrate that the photo-excited electrons facilitate membrane-bound electron transport chain, thereby augmenting the Na+ and H+ ion gradients across membrane to enhance adenosine triphosphate (ATP) synthesis. Additionally, this biohybrid system promotes the metabolism of pyruvate to acetyl coenzyme A (AcCoA) and inhibits the flow of AcCoA to the tricarboxylic acid (TCA) cycle, resulting in a 1.26-fold augmentation in CH4 production from glucose-derived carbon. Our results provide a unique strategy for enhancing methanogenesis through rational biohybrid design and reprogramming, which gives a promising avenue for sustainably manufacturing value-added chemicals.


Subject(s)
Adenosine Triphosphate , Methane , Methane/metabolism , Electron Transport , Adenosine Triphosphate/metabolism , Energy Metabolism , Biological Transport , Methanosarcina/metabolism
3.
ACS Nano ; 17(16): 15847-15856, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37530594

ABSTRACT

Diets comprising selenium-deficient crops have been linked to immune disorders and cardiomyopathy. Selenium nanoparticles (SeNPs) have emerged as a promising nanoplatform for selenium-biofortified agriculture. However, SeNPs fail to reach field-scale applications due to a poor understanding of the fundamental principles of its behavior. Here, we describe the transport, transformation, and bioavailability of SeNPs through a combination of in vivo and in vitro experiments. We show synthesized amorphous SeNPs, when sprayed onto the leaves of Arabidopsis thaliana, are rapidly biotransformed into selenium(IV), nonspecifically incorporated as selenomethionine (SeMet), and specifically incorporated into two selenium-binding proteins (SBPs). The SBPs identified were linked to stress and reactive oxygen species (mainly H2O2 and O2-) reduction, processes that enhance plant growth and primary root elongation. Selenium is transported both upwards and downwards in the plant when SeNPs are sprayed onto the leaves. With the application of Silwet L-77 (a common agrochemical surfactant), selenium distributed throughout the whole plant including the roots, where pristine SeNPs cannot reach. Our results demonstrate that foliar application of SeNPs promotes plant growth without causing nanomaterial accumulation, offering an efficient way to obtain selenium-fortified agriculture.


Subject(s)
Nanoparticles , Selenium , Plant Proteins , Hydrogen Peroxide , Antioxidants
4.
Ecotoxicol Environ Saf ; 247: 114218, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36279636

ABSTRACT

Microplastics (MPs) in natural environments undergo complex aging processes, changing their interactions with coexisting antibiotics, and posing unpredictable ecological risks. However, the joint toxicity of aged MPs (aMPs) and antibiotics to bacteria, especially at the molecular level, is unclear. In this study, non-thermal plasma technology was used to simultaneously simulate various radical oxidation and physical reactions that occur naturally in the environment, breaking the limitation of simple aging process in laboratory aging technologies. After aging, we investigated the altered properties of aMPs, their interactions with ciprofloxacin (CIP), and the molecular responses of E. coli exposed to pristine MPs (13.5 mg/L), aMPs (13.5 mg/L), and CIP (2 µg/L) individually or simultaneously. aMPs bound far more CIP to their surfaces than pristine MPs, especially in freshwater ecosystems. Notably, the growth of E. coli exposed to aMPs alone was inhibited, whereas pristine MPs exposure didn't affect the growth of E. coli. Moreover, the most differentially expressed genes in E. coli were induced by the coexposure of aMPs and CIP. Although E. coli depended on chemotaxis to improve its flagellar rotation and escaped the stress of pollutants, the coexposure of aMPs and CIP still caused cell membrane damage, oxidative stress, obstruction of DNA replication, and osmotic imbalance in E. coli. This study filled the knowledge gap between the toxicity of aMPs and pristine MPs coexisting with antibiotics at the transcription level, helping in the accurate assessment of the potential risks of MPs to the environment.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/toxicity , Ciprofloxacin/toxicity , Plastics , Escherichia coli/genetics , Escherichia coli/metabolism , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Anti-Bacterial Agents/toxicity
5.
Environ Sci Technol ; 56(7): 4071-4079, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35290020

ABSTRACT

Although the biological effects of nanoplastics (<100 nm in size) in aquatic environments have been increasingly investigated, almost all such studies have been performed at observed-effect concentrations (higher than 1 µg/mL). The use of observed-effect concentrations of nanoplastics can provide essential data for evaluating the potential risks, but how these results apply to the effects of concentrations of nanoplastics observed in the environment remains unclear. Here, we show that exposure to both positively and negatively charged nanoplastics at the observed-effect concentration (ranging from 0 to 50 µg/mL) can result in physiological changes of Lemna minor L., a typical flowering aquatic plant species, inducing H2O2 and O2- accumulation and even cell death. However, the nanoplastics at environmentally relevant concentrations (lower than 0.1 µg/mL) had no obvious effects on phenotype of L. minor. Moreover, nanoplastics at both observed-effect and environmentally relevant concentrations were adsorbed onto the roots and fronds of the plants, whereas uptake by the roots and fronds occurred only at the observed-effect concentration. Although no phenotypic changes across 30 generations of cultivation were observed when the plants were exposed to 0.015 µg/mL nanoplastics, the expression of genes related to the response to stimuli and to oxidative and osmotic stress was upregulated under both observed-effect and environmentally relevant concentrations. Our findings suggest that the long-term presence of nanoplastics at environmentally relevant concentrations might induce some variations in the transcription level and have potential threat to floating microphytes and aquatic ecosystems.


Subject(s)
Araceae , Water Pollutants, Chemical , Araceae/metabolism , Ecosystem , Hydrogen Peroxide , Microplastics/toxicity , Polystyrenes , Water Pollutants, Chemical/metabolism
6.
Sci Total Environ ; 754: 141999, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33254870

ABSTRACT

N-doped carbon materials have been proven to be effective catalysts for activating peroxymonosulfate (PMS). Marine algae biomass is rich in nitrogenous substances , which can reduce the cost of N-doping process and can obtain excellent N-doped catalysts cheaply and easily. In this study, kelp biomass was selected to prepare N-doped kelp biochar (KB) materials. The high defect degree, high specific surface area, and participation of graphite N make KB have excellent catalytic degradation ability. The KB degraded 40 mg/L ofloxacin (OFL) close to 100% within 60 min, applied with PMS. Through quenching experiments and electron paramagnetic resonance spectroscopy, the degradation process dominated by non-radical pathways was determined. At the same time, O2·- and 1O2 were closely related, and a significant impact of quenching O2·- on the reaction was observed. The non-radical approach made the system excellent performance over a wide pH range and in the presence of multiple anions. The experiments of reusability confirmed the stability of the material. Its catalytic performance was restored after low-temperature pyrolysis. This research supports the use of endogenous nitrogen in biomass. It provides more options for advanced oxidation process application and marine resource development.


Subject(s)
Kelp , Charcoal , Ofloxacin , Peroxides
7.
Nat Nanotechnol ; 15(9): 755-760, 2020 09.
Article in English | MEDLINE | ID: mdl-32572228

ABSTRACT

Although the fates of microplastics (0.1-5 mm in size) and nanoplastics (<100 nm) in marine environments are being increasingly well studied1,2, little is known about the behaviour of nanoplastics in terrestrial environments3-6, especially agricultural soils7. Previous studies have evaluated the consequences of nanoplastic accumulation in aquatic plants, but there is no direct evidence for the internalization of nanoplastics in terrestrial plants. Here, we show that both positively and negatively charged nanoplastics can accumulate in Arabidopsis thaliana. The aggregation promoted by the growth medium and root exudates limited the uptake of amino-modified polystyrene nanoplastics with positive surface charges. Thus, positively charged nanoplastics accumulated at relatively low levels in the root tips, but these nanoplastics induced a higher accumulation of reactive oxygen species and inhibited plant growth and seedling development more strongly than negatively charged sulfonic-acid-modified nanoplastics. By contrast, the negatively charged nanoplastics were observed frequently in the apoplast and xylem. Our findings provide direct evidence that nanoplastics can accumulate in plants, depending on their surface charge. Plant accumulation of nanoplastics can have both direct ecological effects and implications for agricultural sustainability and food safety.


Subject(s)
Arabidopsis/drug effects , Microplastics/chemistry , Microplastics/pharmacokinetics , Nanostructures/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Biological Availability , Dynamic Light Scattering , Gene Expression Regulation, Plant/drug effects , Plant Exudates/chemistry , Plant Roots/drug effects , Plant Roots/metabolism , Polystyrenes/chemistry , Polystyrenes/pharmacokinetics , Reactive Oxygen Species/metabolism , Soil Pollutants/chemistry , Soil Pollutants/pharmacokinetics , Tissue Distribution
8.
Environ Sci Technol ; 54(6): 3386-3394, 2020 03 17.
Article in English | MEDLINE | ID: mdl-31961660

ABSTRACT

Although the fate of nanoplastics (<100 nm) in freshwater systems is increasingly well studied, much less is known about its potential threats to cyanobacterial blooms, the ultimate phenomenon of eutrophication occurrence worldwide. Previous studies have evaluated the consequences of nanoplastics increasing the membrane permeability of microbes, however, there is no direct evidence for interactions between nanoplastics and microcystin; intracellular hepatotoxins are produced by some genera of cyanobacteria. Here, we show that the amino-modified polystyrene nanoplastics (PS-NH2) promote microcystin synthesis and release from Microcystis aeruginosa, a dominant species causing cyanobacterial blooms, even without the change of coloration. We demonstrate that PS-NH2 inhibits photosystem II efficiency, reduces organic substance synthesis, and induces oxidative stress, enhancing the synthesis of microcystin. Furthermore, PS-NH2 promotes the extracellular release of microcystin from M. aeruginosa via transporter protein upregulation and impaired cell membrane integrity. Our findings propose that the presence of nanoplastics in freshwater ecosystems might enhance the threat of eutrophication to aquatic ecology and human health.


Subject(s)
Cyanobacteria , Microcystis , Ecosystem , Eutrophication , Microcystins
9.
Environ Pollut ; 247: 1064-1070, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30823335

ABSTRACT

Microcystin (MC) elimination is a global challenge that is necessary for the health of humans and ecosystems. Biodegradation of MC, one of the most environmental-friendly methods, had previously been focused on the aerobic condition. In this study, two enrichment cultures from Taihu sediments possessed high capacity for MC-leucine arginine (MC-LR) anaerobic biodegradation. Meanwhile, it was firstly found that MC-LR underwent similar degradation process under anaerobic conditions to that in aerobic condition. Furthermore, a novel degradation pathway, hydrolyzing of Ala-Mdha to form a new linear MC-LR intermediate, was proposed under anaerobic conditions. Combining MC-LR degradation with microbial community analysis, this study deduced that Candidatus Cloacamonas acidaminovorans str. Evry may play an important role in the degradation of MC-LR. These findings suggest an additional pathway involved in the environmental cycle of MC-LR, which implies that the biotransformation of MC-LR might play an important role in eliminating MC-LR in eutrophic lake sediments under anaerobic conditions.


Subject(s)
Anaerobiosis , Bacteria/metabolism , Biodegradation, Environmental , Biotransformation , Lakes/chemistry , Microcystins/metabolism , China , Metabolic Networks and Pathways , Oxidation-Reduction
10.
Chemosphere ; 199: 138-146, 2018 May.
Article in English | MEDLINE | ID: mdl-29433027

ABSTRACT

Bensulfuron methyl (BSM), one of the most widely used herbicides in paddy soils, is frequently detected in natural and artificial aquatic systems. However, BSM transformation under methanogenic conditions has not been given sufficient attention. In this study, BSM elimination and transformation by anaerobic enrichment cultures were investigated. The results showed that BSM can be mineralized to methane through hydrolysis, adsorption, and biodegradation under a methanogenic environment. The adsorption led to protein static quenching in the extracellular polymeric substances (EPSs) of the enrichment cultures. Specifically, BSM mainly reacted with the amine, amide, amino acid, and amino sugar functional groups in proteins. BSM hydrolysis and biodegradation occurred through the breakage of the sulfonylurea bridge and sulfonyl amide linkage. The cleavage of the sulfonylurea bridge occurred in both hydrolysis and biodegradation, while the cleavage of the sulfonyl amide linkage only occurred in hydrolysis. These results elucidated the complex transformation of BSM under methanogenic conditions, which will advance the studies on sulfonylurea herbicide biotransformation and hazard assessment in the environment.


Subject(s)
Biodegradation, Environmental , Sulfonylurea Compounds/chemistry , Adsorption , Herbicides/chemistry , Hydrolysis , Methane/chemistry , Soil Microbiology , Soil Pollutants/metabolism
11.
Zhong Yao Cai ; 33(5): 797-801, 2010 May.
Article in Chinese | MEDLINE | ID: mdl-20873567

ABSTRACT

OBJECTIVE: To prepare curcumin polybutylcyanoacrylate nanoparticles (Cur-PBCNs) and evaluate its characteristics. METHODS: Cur-PBCNs were prepared by emulsion polymerization, and the formulation was optimized by L16 (4(3)) orthogonal design test with entrapment efficiency and drug loading as indices. In addition, its characteristics were investigated. RESULTS: The nanoparticles were spherical in appearance under transmission electron microscope (TEM). The mean diameter of the nanoparticles was 93.8 nm, the mean entrapment efficiency was (50.4 +/- 2.2)%, the mean drug-loading was (33.5 +/- 0.9)% and the Zeta potential was -6.81 mV. The total drug release was 34.74% in 2 hours followed by a sustained release in vitro for Cur-PBCNs, and the in vitro release profile of the nanoparticles was fit for two phases kinetics equation: 100 - Q = 4.5235e(-0.1724t) + 4.1641e(-0.0114t). CONCLUSION: The optimal Cur-PBCNs show good characteristics and sustained release character in vitro.


Subject(s)
Curcumin/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems , Enbucrilate/chemistry , Nanoparticles/chemistry , Chemistry, Pharmaceutical , Curcumin/chemistry , Curcumin/pharmacokinetics , Drug Stability , Emulsions , Enbucrilate/administration & dosage , Zingiber officinale/chemistry , Particle Size , Polyethylene Glycols/chemistry , Technology, Pharmaceutical/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...