Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Toxics ; 12(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38922070

ABSTRACT

The toxic metal (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) pollution in 250 agricultural soil samples representing the urban area of Jiaxing was studied to investigate the temporal and spatial variations. Compared to the early 1990s, the pollution level has increased. Industry and urbanization were the main factors causing toxic metal pollution on temporal variation, especially the use of feed containing toxic metals. The soil types and crop cultivation methods are the main factors causing toxic metal pollution on spatial variation. Although the single-factor pollution indices of all the toxic metals were within the safe limits, as per the National Soil Environmental Quality Standard (risk screening value), if the background values of soil elements in Jiaxing City are used as the standard, the pollution index of all the elements surveyed exceeds 1.0, reaching a level of mild pollution. The soil samples investigated were heavily contaminated with toxic metal compounds, and their levels increased over time. This situation poses potential ecological and health risks.

2.
J Hazard Mater ; 472: 134474, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38696961

ABSTRACT

Body size is a key life-history trait of organisms, which has important ecological functions. However, the relationship between soil antibiotic resistance gene (ARG) distribution and organisms' body size has not been systematically reported so far. Herein, the impact of organic fertilizer on the soil ARGs and organisms (bacteria, fungi, and nematode) at the aggregate level was analyzed. The results showed that the smaller the soil aggregate size, the greater the abundance of ARGs, and the larger the body size of bacteria and nematodes. Further analysis revealed significant positive correlations of ARG abundance with the body sizes of bacteria, fungi, and nematodes, respectively. Additionally, the structural equation model demonstrated that changes in soil fertility mainly regulate the ARG abundance by affecting bacterial body size. The random forest model revealed that total phosphorus was the primary soil fertility factor influencing the body size of organisms. Therefore, these findings proposed that excessive application of phosphate fertilizers could increase the risk of soil ARG transmission by increasing the body size of soil organisms. This study highlights the significance of organisms' body size in determining the distribution of soil ARGs and proposes a new disadvantage of excessive fertilization from the perspective of ARGs.


Subject(s)
Bacteria , Body Size , Drug Resistance, Microbial , Fertilizers , Fungi , Nematoda , Soil Microbiology , Soil , Body Size/drug effects , Bacteria/genetics , Bacteria/drug effects , Animals , Soil/chemistry , Fungi/genetics , Fungi/drug effects , Nematoda/drug effects , Nematoda/genetics , Drug Resistance, Microbial/genetics
3.
Chemosphere ; 352: 141336, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309599

ABSTRACT

In the pursuit of a safe, low-cost, and sustainable method for the reuse of landfill-mined-soil-like-fractions (LFMSFs), pot experiments were conducted using seven growth substrates consisting of LFMSFs, tea residue, and peat for the cultivation of Photinia × fraseri. Six of the substrates had 40 %:60 %, 60 %:40 %, and 80 %:20 % volume ratios of LFMSFs to tea residue or peat, and one substrate consisted entirely of LFMSFs. The physicochemical properties of the substrate, growth parameters of the plants, and heavy metal content in the different pots were determined after one year of growth. The results indicated that the physicochemical properties of the substrate, that was composed of a mixture of LFMSFs and tea residue showed a significant improvement in organic matter, nitrogen, phosphorus, and potassium. However, there was also an increase in the salt and heavy metal contents when compared with those of peat. The plant growth in the LFMSF and tea residue substrate was slightly lower than that in the LFMSF and peat mixture. Notably, the best plant growth and environmentally friendly effects were observed when LFMSFs were added at 40 %. Additionally, most of the heavy metals were primarily removed from the substrate through the leaves of the seedlings, with the heavy metal contents being relatively low. In conclusion, LFMSFs as a cultivation substrate, represent a practical approach for reutilization, which could contribute to the reduction of reliance on traditional resources.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil/chemistry , Metals, Heavy/analysis , Soil Pollutants/analysis , Waste Disposal Facilities , Tea
4.
Org Lett ; 25(47): 8535-8539, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37985463

ABSTRACT

A novel method for the nickel-catalyzed multicomponent aminofluoroalkylation/cyclization of styrenes with ethyl fluoroacetate and anilines has been developed. This protocol provides general and efficient access to a diverse range of fluoro-γ-lactams from simple and readily available starting materials. Control experiments prove the involvement of radical intermediates and excluded the presence of 2-fluoro-N-phenylacetamide.

5.
Appl Microbiol Biotechnol ; 107(18): 5829-5842, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37450017

ABSTRACT

Reductive soil disinfestation (RSD) is an effective bioremediation technique to restructure the soil microbial community and eliminate soilborne phytopathogens. Yet we still lack a comprehensive understanding of the keystone taxa involved and their roles in ecosystem functioning in degraded soils treated by RSD. In this study, the bacteriome network structure in RSD-treated soil and the subsequent cultivation process were explored. As a result, bacterial communities in RSD-treated soil developed more complex topologies and stable co-occurrence patterns. The richness and diversity of keystone taxa were higher in the RSD group (module hub: 0.57%; connector: 23.98%) than in the Control group (module hub: 0.16%; connector: 19.34%). The restoration of keystone taxa in RSD-treated soil was significantly (P < 0.01) correlated with soil pH, total organic carbon, and total nitrogen. Moreover, a strong negative correlation (r = -0.712; P < 0.01) was found between keystone taxa richness and Fusarium abundance. Our results suggest that keystone taxa involved in the RSD network structure are capable of maintaining a flexible generalist mode of metabolism, namely with respect to nitrogen fixation, methylotrophy, and methanotrophy. Furthermore, distinct network modules composed by numerous anti-pathogen agents were formed in RSD-treated soil; i.e., the genera Hydrogenispora, Azotobacter, Sphingomonas, and Clostridium_8 under the soil treatment stage, and the genera Anaerolinea and Pseudarthrobacter under the plant cultivation stage. The study provides novel insights into the association between fungistasis and keystone or sensitive taxa in RSD-treated soil, with significant implications for comprehending the mechanisms of RSD. KEY POINTS: • RSD enhanced bacteriome network stability and restored keystone taxa. • Keystone taxa richness was negatively correlated with Fusarium abundance. • Distinct sensitive OTUs and modules were formed in RSD soil.


Subject(s)
Fusarium , Microbiota , Soil/chemistry , Bacteria/metabolism , Firmicutes , Soil Microbiology
6.
Chemistry ; 29(54): e202301826, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37369918

ABSTRACT

We report the development of Pd/Cu-catalyzed selective 2,1-borocarbonylation reactions of aliphatic terminal alkynes with aryldiazonium salts and B2 Pin2 to prepare gem-bis(boryl) ketones in one-pot. A series of corresponding products are obtained with good to excellent yields under a carbon monoxide atmosphere (10 bar). In addition, wide functional-group tolerance can be observed. Preliminary mechanistic studies reveal that ethyl acetate serves as a proton source in the reaction.

7.
Front Microbiol ; 14: 1146207, 2023.
Article in English | MEDLINE | ID: mdl-37032903

ABSTRACT

In agricultural practice, reductive soil disinfestation (RSD) is an effective method for eliminating soil-borne pathogens that depends heavily on carbon source. However, knowledge regarding the assembly of soil microbial communities in RDS-treated soils amended with different carbon sources after continuous crop cultivation is still not well-characterized. RSD treatments were performed on greenhouse soil with six different carbon sources (ethanol, glucose, alfalfa, wheat bran, rice bran, and sugarcane residue), which have different C:N ratios (Org C/N) and easily oxidized carbon contents (Org EOC). After RSD, two consecutive seasons of pepper pot experiments were conducted. Then, the effects of carbon source property, crop cultivation, and soil chemical property on soil microbial community reestablishment, pathogen reproduction, and crop performance were investigated in the RSD-cropping system. Variation partition analysis indicated that carbon source property, crop cultivation, and soil chemical property explained 66.2 and 39.0% of bacterial and fungal community variation, respectively. Specifically, Mantel tests showed that Org C/N, crop cultivation, soil available phosphorus and potassium were the most important factors shaping bacterial community composition, while Org C/N, Org EOC, and crop cultivation were the most important factors shaping fungal community composition. After two planting seasons, the number of cultivable Fusarium was positively correlated with Org EOC, and negatively correlated with soil total organic carbon, Fungal Chao1, and Fungal PC1. Crop yield of complex-carbon soils (Al, Wh, Ri and Su) was negatively affected by Org C/N after the first season, and it was highest in Al, and lower in Et and Su after the second season. Overall, Org EOC and Org C/N of carbon source were vitally important for soil microbe reestablishment, Fusarium reproduction and crop performance. Our findings further broaden the important role of carbon source in the RSD-cropping system, and provide a theoretical basis for organic carbon selection in RSD practice.

8.
J Environ Manage ; 337: 117549, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36934502

ABSTRACT

Fertilization has become one of the most important ways to recycle perishable waste. In order to reveal the effect of the nutrient of the perishable waste primary products on the market and the possible impact of their application, 136 perishable waste primary products were sampled in nine cities in Zhejiang province, China. The result shows that these products have high nutrient content (average nutrient content was 5.00%). However, the conductivity (7.19 mS/cm) total soluble salt content (12.07%), and grease content (5.99%) were too high. The excessive salt and grease may cause harm to soil and crops, and become the main limiting factors for the fertilizer utilization of perishable waste. Heavy metal content of most of the samples met current commercial organic fertilizer standards, except that lead and chromium content of some samples exceeded the limit standard. Toluene, ethylbenzene, m & p-xylene were generally detected in the samples. These toxic and harmful substances have brought risks to the safe use of perishable waste into fertilizers.


Subject(s)
Metals, Heavy , Waste Products , Fertilizers/analysis , Soil/chemistry , Risk Assessment , Crops, Agricultural , Metals, Heavy/analysis
9.
J Org Chem ; 88(7): 4352-4358, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-36929949

ABSTRACT

An unprecedented and challenging multicomponent reaction has been developed that allows for the direct transformation of acyl chlorides with alkynes into the corresponding saturated ß-boryl ketones via Pd/Cu-catalyzed coupling and boration with ethyl acetate as the hydrogen sources. Various ß-boryl ketones were synthesized in good to excellent yields with broad functional group tolerance. In addition, the introduction of boron groups into the products provides substantial opportunities for further conversions.

10.
J Org Chem ; 88(8): 5153-5160, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36103718

ABSTRACT

A convenient four-component reaction has been developed that allows for the direct transformation of aryl iodides with alkyl halides into the corresponding aromatic esters and diesters via palladium-catalyzed carbonylation with water as solvent. Various esters and diesters were isolated in moderate to good yields with broad functional group tolerance.

11.
Chemistry ; 29(17): e202203079, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36573558

ABSTRACT

A copper-catalyzed three-component coupling reaction has been developed allowing the rapid building of valuable complex highly functionalized ß-polychloromethyl amines from simple styrenes, arylamines, and dichloromethane/chloroform. Using aryldiazonium salts as a radical initiator, a series of corresponding products are obtained with moderate to good yields under a carbon dioxide or nitrogen atmosphere (50 psi). In addition, good functional group tolerance can be observed.

12.
Toxics ; 10(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36355937

ABSTRACT

The expected typical gley moist paddy soil was collected in Zhejiang Province, China, and conventional (XS 134 and JH 218) and varieties of hybrid (YY 538 and CY 84) rices were used for a pot experiment. The effects of exogenous heavy metals lead (Pb) and chromium (Cr) on rice growth and the accumulation of heavy metals in the grains were studied. The results show that heavy metal concentrations in soil and rice grains have significant correlations, and Pb and Cr significantly (p < 0.05) inhibited the rice growth (plant height and panicle weight). The potential ecological hazard index (RI) of heavy metals in the soil was 4.88−6.76, which belongs to the grade of "slight ecological hazard", and Pb provides a larger potential ecological hazard than Cr in the studied region. The thresholds for potential health risks and ecological risks for Pb and Cr were lower than the "Control Standards for Soil Pollution Risk of Agricultural Land (Trial)" (GB15618-2018, China). This work provides the basis for soil pollution control for Pb and Cr and the selection of rice cultivars from Pb and Cr accumulated soils.

13.
Chem Sci ; 13(41): 12122-12126, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36349108

ABSTRACT

A new Pd/Cu-catalyzed carbonylation and borylation of alkynes with aryldiazonium salts toward α-unsubstituted ß-boryl ketones with complete regioselectivity has been developed. This transformation shows broad substrate scope and excellent functional-group tolerance. Moreover, the obtained 1,2-carbonylboration products provide substantial opportunities for further transformations which cannot be obtained by known carbonylation procedures. Preliminary mechanistic studies indicate that the three hydrogen atoms of the products originated from ethyl acetate.

14.
J Environ Manage ; 319: 115694, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35841778

ABSTRACT

The application of additives to regulate the microbial functional composition during composting has attracted much research attention. However, little is known about the succession and role of the fungal community in the laboratory-scale composting of vegetable waste supplemented with pig manure and microbial agents. The purpose of this study was to identify effective additives for improving vegetable waste composting performance and product quality, and to analyze the microbial community succession during composting. The results showed that the combined addition of pig manure and microbial agents (T2 treatment) accelerated the pile temperature increase, enhanced total organic carbon degradation (23.36%), and promoted the maturation of the compost. Furthermore, the T2 treatment increased the activities of most enzymes, reshaped the microbial community, and reduced the relative abundance of potential animal (1.60%) and plant (0.095%) pathogens. The relative abundance of Firmicutes (71.23%) increased with the combined addition of pig manure and microbial agents in the thermophilic stage. In the middle and late stages, Saccharomonospora, Aspergillus, and Thermomyces, which were related to C/N and total phosphorus, were enriched in the T2 treatment. Network analysis demonstrated that the complexity and stability of the fungal network were more evidently increased in the T2 treatment, and Saccharomonospora, Aspergillus, and Microascus were identified as keystone taxa. The keystone taxa associated with extracellular enzymes contributed significantly to compost maturation. These results provide a reference for the application of additives to improve compost safety in pilot-scale composting.


Subject(s)
Composting , Microbiota , Mycobiome , Animals , Manure/microbiology , Soil , Swine , Vegetables
15.
Environ Sci Technol ; 55(21): 14732-14745, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34689552

ABSTRACT

Composting alters manure-derived antibiotic resistance genes (ARGs) to a certain extent, which is largely dependent upon the composting phase, manure type, microbial phylogeny, and physicochemical properties. However, little is known about how these determinants influence the fate and dynamics of ARGs as well as the mechanisms underlying the ecological process of ARGs during composting. Here, we investigated the temporal patterns of ARGs and their correlations with a series of physicochemical, genetic, and microbial properties during pilot-scale composting of chicken, maggot, bovine, and swine manure. We detected 237 ARGs, 71 of which were co-occurring across all four composting processes and accounted for >80% of the sum of resistome abundance. In support of this ARG co-occurrence, variance partition analyses demonstrated that the manure type explained less resistome variations (5.6%) than the composting phase (21.6%). During the phase-driven resistome dynamics, ARGs showed divergent variations in abundance, and certain beta-lactams and multidrug ARGs were consistently enriched across multiple manure composting processes. Correlation analyses all led to the conclusion that the divergent ARG variations during composting were attributable to the unequal effects of physicochemical properties, mobile elements, and succession of indigenous microbiota, whereas antibiotic residues' effects were marginal. Ultimately, this study determines the relative importance of various key determinants in the phase-driven divergence of ARGs during multiple manure composting processes and demonstrates a clear need to evaluate risks posed by enriched ARGs toward their receiving environments.


Subject(s)
Composting , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Drug Resistance, Microbial , Genes, Bacterial , Manure , Swine
16.
Sci Total Environ ; 776: 145864, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33639462

ABSTRACT

An experiment was performed to study the inactivation effect of aerobic composting on heavy metals in maggot, pig and chicken manures. After composting, Cu mainly occurred in the oxidizable (OXI) fraction with a percentage distribution above 54%. Zn and Cd mainly existed in the bioavailable factor (BF), which has strong activity, with percentage distributions greater than 88.3% and 82.7%, respectively. Cr and Pb mainly existed in the stable residual (RES) fraction with a percentage distribution of approximately 50%. The aerobic composting process had a clear inactivation effect on heavy metals. For maggot manure compost in particular, the inactivation effects of Cu, Cr, Zn, Cd, and Pb were very good throughout the composting process, and the inactivation effect of Pb reached 54.42%. In addition, the process of biotransformation by housefly maggots promoted the conversion of fulvic acid (FA) to humic acid (HA) in pig manure, and the final increase in HA/FA after maggot manure composting was the largest among the different types of manure and beneficial to the inactivation of heavy metals. Compounds containing -CH3 and -CH2 groups were reduced, and aromatic structures were enhanced. Moreover, a maggot yield equivalent to 13.2% of the fresh pig manure was achieved during the process of biotransformation. The correlation analysis results showed that moisture content was an important factor affecting the inactivation rates of heavy metals in the three manure composts. Our results highlight that the process of biotransformation by housefly maggots can promote composting maturity and the inactivation of heavy metals, and produce a large amount of insect protein, yielding beneficial ecological and economic benefits.


Subject(s)
Metals, Heavy , Soil , Animals , Biotransformation , Insect Proteins , Manure , Metals, Heavy/analysis , Swine
17.
Huan Jing Ke Xue ; 41(2): 1005-1012, 2020 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-32608763

ABSTRACT

The widespread use of antibiotics in feed results in a large number of antibiotic residues in feces. Composting technology can degrade these residual antibiotics. A pilot-scale aerobic composting device was used to analyze the antibiotic residues and composting degradation characteristics of four types of feces (maggot manure, chicken manure, pig manure, and cow manure). Results showed that sulfonamides (SAs), fluoroquinolones (FQs), tetracycline (TCs), and macrolides (MAs) were the main antibiotics, and different type of feces had different dominant antibiotics. The contents of FQs and oxytetracycline (OTC) were none on the seventh day of the compost, and their degradation rates were the fastest. After composting, the degradation rate of doxycycline (DOX) in the four types of fecal composts was more than 85%. Meanwhile, the degradation rates of SAs in chicken, pig, and cow manure composts were also more than 80%, which was much lower in the one in maggot manure compost. MAs were only found in maggot manure, and the degradation rate was 70.79% after composting. Correlation analysis indicated that the water content and bulk density were the most important environmental factors affecting the degradation rates of antibiotics in the four types of fecal composts.


Subject(s)
Anti-Bacterial Agents/analysis , Composting , Manure , Animals , Cattle , Feces , Female , Swine
18.
Waste Manag ; 105: 339-346, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32114405

ABSTRACT

The ecological disposal of gibberellin fermentation residues (GFRs) is urgently needed. This study explored a new method of direct GFR utilization with swine manure at different substitution proportions (0%, 20%, 40%, and 60%) using two-step composting mediated by housefly maggot bioconversion. Regarding maggot bioconversion, substitution of GFRs accelerated the temperature increase and water content decrease, slowed the pH increase, and enhanced the maggot conversion rate. Among the proportions, 20% GFR substitution had the highest maggot conversion rate of 15.15%. During the composting stage, GFR substitution promoted the initial temperature increase and the water content decrease and maintained a relatively low pH. However, only 20% substitution promoted the maturity of compost. The degradation rates of the gibberellin residue were all higher than 97% in the treatments with GFRs after two-step composting. High-throughput sequencing analysis showed that GFR substitution had significant effects on the microbial community structure during the whole process. However, the change in the microbial community was similar to that of conventional composting. Therefore, this innovative approach is feasible for GFR resource utilization, and substitution below 20% for swine manure is recommended.


Subject(s)
Composting , Houseflies , Animals , Fermentation , Gibberellins , Larva , Manure , Soil , Swine
19.
J Org Chem ; 83(21): 13612-13617, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30295019

ABSTRACT

We have developed a rhodium-catalyzed carbonylative annulation methodology for the direct preparation of thiochromenones. With nonactivated aromatic sulfides and terminal alkynes as the substrates, the desired sulfur-containing six-membered heterocycles were prepared effectively via [3 + 2+1]-type annulation.

20.
Org Lett ; 20(11): 3422-3425, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29790761

ABSTRACT

An interesting selectivity-controlled palladium-catalyzed oxidative carbonylation procedure for the synthesis of propiolates and chromenones has been developed. Starting from phenols and alkynes, under slightly different conditions, various propiolates and chromenones can be isolated in moderate to good yields. Additionally, this also presents the first example of direct carbonylative annulation of nonpreactivated phenols and terminal alkynes to produce chromenones.

SELECTION OF CITATIONS
SEARCH DETAIL
...