Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Phytomedicine ; 132: 155814, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38878526

ABSTRACT

BACKGROUND: Alcohol-associated liver disease (ALD) is a prevalent liver ailment. It has escalated into a significant public health issue, imposing substantial burdens on medical, economic, and social domains. Currently, oxidative stress, inflammation, and apoptosis are recognized as crucial culprits in improving ALD. Consequently, mitigating these issues has emerged as a promising avenue for enhancing ALD. Hydroxysafflor yellow A (HSYA) is the main ingredient in safflower, showing excellent antioxidative stress, anti-inflammatory, and anti-apoptosis traits. However, there are limited investigations into the mechanisms by which HSYA ameliorates ALD PURPOSE: We investigated whether HSYA, a significant constituent of Asteraceae safflower, exerts antioxidant stress and attenuates inflammation and anti-apoptotic effects through PI3K/Akt and STAT3/NF-κB pathways, thereby ameliorating ALD METHODS: We established two experimental models: an ethanol-induced liver damage mouse model in vivo and a HepG2 cell alcohol injury model in vitro RESULTS: The results demonstrated that HSYA effectively ameliorated liver tissue damage, reduced levels of ALT, AST, LDL-C, TG, TC, and MDA, enhanced HDL-C levels, SOD and GSH activities, reduced ROS accumulation in cells, and activated the Nrf2 pathway, a transcription factor involved in antioxidant defense. By regulating the PI3K/Akt and STAT3/NF-κB pathways, HSYA exhibits notable antioxidative stress, anti-inflammatory, and anti-apoptotic effects, effectively impeding ALD's advancement. To further confirm the regulatory effect of HSYA on PI3K/Akt and downstream signaling pathways, the PI3K activator 740 Y-P was used and was found to reverse the downregulation of PI3K by HSYA CONCLUSION: This study supports the effectiveness of HSYA in reducing ALD by regulating the PI3K/Akt and STAT3/NF-κB pathways, indicating its potential medicinal value.

2.
J Neuroimmunol ; 391: 578367, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38735091

ABSTRACT

BACKGROUND: Sepsis-associated encephalopathy (SAE) presents a significant clinical challenge, associated with increased mortality and healthcare expenses. Hyperbaric oxygen therapy (HBOT), involving inhaling pure or highly concentrated oxygen under pressures exceeding one atmosphere, has demonstrated neuroprotective effects in various conditions. However, the precise mechanisms underlying its protective actions against sepsis-associated brain injury remain unclear. This study aimed to determine whether HBOT protects against SAE and to elucidate the impact of the hypoxia-inducible factor-1α (HIF-1α) signaling pathway on SAE. METHODS: The experiment consisted of two parts. In the first part, C57BL/6 J male mice were divided into five groups using a random number table method: control group, sham surgery group, sepsis group, HBOT + sepsis group, and HBOT + sham surgery group. In the subsequent part, C57BL/6 J male mice were divided into four groups: sepsis group, HBOT + sepsis group, HIF-1α + HBOT + sepsis group, and HIF-1α + sepsis group. Sepsis was induced via cecal ligation and puncture (CLP). Hyperbaric oxygen therapy was administered at 1 h and 4 h post-CLP. After 24 h, blood and hippocampal tissue were collected for cytokine measurements. HIF-1α, TNF-α, IL-1ß, and IL-6 expression were assessed via ELISA and western blotting. Microglial expression was determined by immunofluorescence. Blood-brain barrier permeability was quantified using Evans Blue. Barnes maze and fear conditioning were conducted 14 days post-CLP to evaluate learning and memory. RESULTS: Our findings reveal that CLP-induced hippocampus-dependent cognitive deficits coincided with elevated HIF-1α and increased TNF-α, IL-1ß, and IL-6 levels in both blood and hippocampus. Observable activation of microglial cells in the hippocampus and increased blood-brain barrier (BBB) permeability were also evident. HBOT mitigated HIF-1α, TNF-α, IL-1ß, and IL-6 levels, attenuated microglial activation in the hippocampus, and significantly improved learning and memory deficits in CLP-exposed mice. Additionally, these outcomes were corroborated by injecting a lentivirus that overexpressed HIF-1α into the hippocampal region of the mice. CONCLUSION: HIF-1α escalation induced peripheral and central inflammatory factors, promoting microglial activation, BBB impairment, and cognitive dysfunction. However, HBOT ameliorated these effects by reducing HIF-1α levels in Sepsis-Associated Encephalopathy.


Subject(s)
Disease Models, Animal , Hyperbaric Oxygenation , Hypoxia-Inducible Factor 1, alpha Subunit , Mice, Inbred C57BL , Neuroinflammatory Diseases , Sepsis-Associated Encephalopathy , Signal Transduction , Animals , Hyperbaric Oxygenation/methods , Male , Mice , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Signal Transduction/physiology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/therapy , Sepsis/complications , Sepsis/therapy , Sepsis/metabolism
3.
Immunopharmacol Immunotoxicol ; 45(6): 742-753, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37459395

ABSTRACT

BACKGROUND: The association between S100 calcium-binding protein A8 (S100A8) and angiogenesis has been reported in previous reports. This study focuses on the roles of S100A8 in the angiogenesis of human dermal microvascular endothelial cells (HDMECs) and in cutaneous wound healing in mice. METHODS: Candidate genes related to angiogenesis activity were screened using a GSE83582 dataset. The overexpression DNA plasmid of S100A8 was transfected into HDMECs to analyze its effect on cell proliferation, migration, and angiogenesis. Full-thickness skin wounds were induced on mice, followed by adenovirus treatments to analyze the function of gene alteration in wound healing and pathological changes. The upstream regulator of S100A8 was predicted by bioinformatics analysis and verified by luciferase and immunoprecipitation assays. The role of the forkhead box A1 (FOXA1)-S100A8 interaction in p38 MAPK activation and angiogenesis were validated by rescue experiments. RESULTS: S100A8 was identified as a gene significantly correlated with angiogenesis. The S100A8 upregulation promoted the proliferation, migration, and angiogenesis of HDMECs, and it promoted p38 MAPK phosphorylation. Treatment of SB203580, a p38 MAPK inhibitor, blocked the promoting effect of S100A8. FOXA1 was identified as an upstream factor of S100A8 promoting its transcription. FOXA1 overexpression in HDMECs increased p38 MAPK phosphorylation and enhanced the activity of cells, which were blocked by the S100A8 inhibition. Similar results were reproduced in vivo where FOXA1 overexpression accelerated whereas the S100A8 knockdown retarded the cutaneous wound healing in mice. CONCLUSION: FOXA1 mediates the phosphorylation of p38 MAPK through transcription activation of S100A8, thereby inducing angiogenesis and promoting cutaneous wound healing.


Subject(s)
Endothelial Cells , p38 Mitogen-Activated Protein Kinases , Animals , Humans , Mice , Cell Movement , Endothelial Cells/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Skin , Wound Healing
4.
Sci Bull (Beijing) ; 68(9): 928-937, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37085396

ABSTRACT

Low-cost, solution-processed photomultiplication organic photodetectors (PM-OPDs) with external quantum efficiency (EQE) above unity have attracted enormous attention. However, their weak-light detection is unpleasant because the anode Ohmic contact causes exacerbation in dark current. Here, we introduce atomic-level chemical reaction in PM-OPDs which can simultaneously suppress dark current and increase EQE via depositing a 0.8 nm thick Al2O3 by the atomic layer deposition. Suppression in dark current mainly originates from the built-in anode Schottky junction as a result of work function decrease of hole-transporting layer of which the chemical groups can react chemically with the bottom surface of Al2O3 layer at the atomic-level. Such strategy of suppressing dark current is not adverse to charge injection under illumination; instead, responsivity enhancement is realized because charge injection can shift from cathode to anode, of which the neighborhood possesses increased photogenerated carriers. Consequently, weak-light detection limit of the forwardly-biased PM-OPD with Al2O3 treatment reaches a remarkable level of 2.5 nW cm-2, while that of the reversely-biased control is 25 times inferior. Meanwhile, the PM-OPD yields a record high EQE and responsivity of 4.31 × 108% and 1.85 × 106 A W-1, respectively, outperforming all other polymer-based PM-OPDs.

5.
J Microbiol Biotechnol ; 33(4): 533-542, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-36788465

ABSTRACT

Exo-polygalacturonase (exo-PG) hydrolyzes pectin acids and liberates mono-galacturonate, which plays an important role in juice extraction, and has rarely been reported. Exo-PG (AfumExoPG28A) from Aspergillus fumigatus belongs to the glycoside hydrolase 28 family. In this study, its gene was cloned and the protein was expressed and secreted in Pichia pastoris with a maximal activity of 4.44 U/ml. The optimal temperature and pH of AfumExoPG28A were 55°C and 4.0, respectively. The enzyme exhibited activity over almost the entire acidic pH range (>20.0% activity at pH 2.5-6.5) and remained stable at pH 2.5-10.0 for 24 h. The Km and Vmax values of AfumExoPG28A were calculated by the substrate of polygalacturonic acid as 25.4 mg/ml and 23.6 U/mg, respectively. Addition of AfumExoPG28A (0.8 U/mg) increased the light transmittance and juice yield of plantain pulp by 11.7% and 9%, respectively. Combining AfumExoPG28A (0.8 U/mg) with an endo-PG (0.8 U/mg) from our laboratory, the enzymes increased the light transmittance and juice yield of plantain pulp by 45.7% and 10%, respectively. Thus, the enzyme's potential value in juice production was revealed by the remarkable acidic properties and catalytic activity in fruit pulp.


Subject(s)
Aspergillus fumigatus , Polygalacturonase , Polygalacturonase/metabolism , Aspergillus fumigatus/genetics , Aspergillus fumigatus/metabolism , Enzyme Stability , Glycoside Hydrolases/metabolism , Temperature , Hydrogen-Ion Concentration
6.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674921

ABSTRACT

Alcoholic liver damage is caused by long-term drinking, and it further develops into alcoholic liver diseases. In this study, we prepared a probiotic fermentation product of Grifola frondosa total active components (PFGF) by fermentation with Lactobacillus acidophilus, Lactobacillus rhamnosus, and Pediococcus acidilactici. After fermentation, the total sugar and protein content in the PFGF significantly decreased, while the lactic acid level and antioxidant activity of the PFGF increased. Afterward, we investigated the alleviating effect of PFGF on alcoholic liver injury in alcohol-fed mice. The results showed that the PFGF intervention reduced the necrosis of the liver cells, attenuated the inflammation of the liver and intestines, restored the liver function, increased the antioxidant factors of the liver, and maintained the cecum tissue barrier. Additionally, the results of the 16S rRNA sequencing analysis indicated that the PFGF intervention increased the relative abundance of beneficial bacteria, such as Lactobacillus, Ruminococcaceae, Parabacteroids, Parasutterella, and Alistipes, to attenuate intestinal inflammation. These results demonstrate that PFGF can potentially alleviate alcoholic liver damage by restoring the intestinal barrier and regulating the intestinal microflora.


Subject(s)
Grifola , Liver Diseases, Alcoholic , Probiotics , Mice , Animals , Antioxidants , RNA, Ribosomal, 16S/genetics , Probiotics/therapeutic use , Inflammation
7.
Folia Histochem Cytobiol ; 60(4): 323-334, 2022.
Article in English | MEDLINE | ID: mdl-36504133

ABSTRACT

INTRODUCTION: As one of the basic components of Astragalus, Astragaloside IV (AS-IV) has a protective effect on endothelial injury caused by diabetes. AS-IV stimulated endothelial progenitor cells (EPCs) to secrete exosomes loaded with miR-21. This study aimed to investigate the effects of AS-IV-mediated EPCs exosomal miR-21 (EPC-exos-miR-21) on high glucose (HG) damaged endothelial cells. MATERIALS AND METHODS: After the isolation of EPCs derived from fetal umbilical cord blood, exosomes of EPCs were obtained by differential centrifugation. The morphology of exosomes was observed by electron microscopy. The particle size distribution of exosomes was detected by Nanoparticle Tracking Analysis. Human umbilical vein endothelial cells (HUVECs) were treated with 33 mM glucose to establish an HG injury model. Flow cytometry and TUNEL assay were used to characterize the surface markers of primary EPCs and the apoptosis of HUVECs. The gene and protein expression were detected by qPCR, immunofluorescence, and Western blotting. A dual luciferase assay was used to verify the targeting relationship of miR-21 with PTEN. RESULTS: HG environment led to time- and dose-dependent inhibition and enhancement of autophagy and apoptosis in HUVECs. AS-IV stimulated EPCs to secrete exosomes loaded with miR-21. Exosomes secreted by EPCs pretreated with AS-IV [EPC-exo(ASIV)] promoted autophagy and inhibited apoptosis in HG-impaired HUVECs. PTEN is a target of miR-21. MiR-21 carried by EPC-exo(ASIV) repressed PTEN expression in HG-impaired HUVECs. In contrast, p-AKT, p-mTOR, p-PI3K, cleaved PARP and PARP levels were upregulated. Compared to the HG group, the expression of autophagy regulatory genes (ATG5, beclin1 and LC3) was enhanced in the EPC-exo(ASIV) group and EPC-exo(ASIV)-miR-21 mimic group. In contrast, apoptosis-positive regulatory genes (Bax, caspase-3 and caspase-9) were attenuated. Further overexpression of PTEN reversed the expression of these genes. CONCLUSIONS: AS-IV-mediated EPC-exos-miR-21 could enhance autophagy and depress apoptosis in HG-damaged endothelial cells via the miR-21/PTEN axis.


Subject(s)
Endothelial Progenitor Cells , Exosomes , MicroRNAs , Humans , Endothelial Progenitor Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/genetics , Exosomes/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Apoptosis , Autophagy , Glucose/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
8.
Foods ; 11(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36360136

ABSTRACT

Pueraria is a rich source of bioactive compounds, but there is a lack of comprehensive information concerning its composition. Therefore, a UHPLC-Q-Orbitrap HRMS method was developed to identify and quantify bioactive compounds in pueraria. Twelve isoflavones were quantified, with puerarin being the most abundant, followed by puerarin 6″-O-xyloside, 3'-methoxy puerarin, and 3'-hydroxy puerarin. A further 88 bioactive components in eight categories were also tentatively identified. The 12 isoflavones, except for genistein, exhibited α-glucosidase inhibitory activity. The binding of these compounds to the active site of α-glucosidase was confirmed via molecular docking analysis. These findings provide a basis for identifying pueraria as a promising functional food ingredient.

9.
Adv Sci (Weinh) ; 9(26): e2202150, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35848759

ABSTRACT

Semitransparent organic solar cells (ST-OSCs) offer potentially more opportunities in areas of self-powered greenhouses and building-integrated photovoltaic systems. In this work, the effort to use a combination of solution-processable gold nanobipyramids (AuNBPs)-based hole transporting layer and a low/high dielectric constant double layer optical coupling layer (OCL) for improving the performance of ST-OSCs over the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT) is reported. The fabrication and characterization of the ST-OSCs are guided, at design and analyses level, using the theoretical simulation and experimental optimization. The use of a low/high dielectric constant double layer OCL helps enhancing the visible light transparency while reflecting the near-infrared (NIR) photons back into the photoactive layer for light harvesting. NIR absorption enhancement in the ST-OSCs is realized through the AuNBPs-induced localized surface plasmon resonance (LSPR). The weight ratio of the polymer donor to nonfullerene acceptor in the bulk heterojunction is adjusted to realize the maximum NIR absorption enhancement, enabled by the AuNBPs-induced LSPR, achieving the high-performance ST-OSCs with a high PCE of 13.15% and a high AVT of 25.9%.

10.
Exp Dermatol ; 31(9): 1392-1401, 2022 09.
Article in English | MEDLINE | ID: mdl-35570385

ABSTRACT

Angiogenesis has been identified to assume a critical role in skin wound healing. Moreover, zinc finger E-box binding homeobox 1 (ZEB1) was capable of promoting skin wound healing. Herein, cell and animal experiments were implemented in this study to figure out whether ZEB1 orchestrated angiogenesis during skin wound healing. Subsequent to gain- and loss-of-function approaches in human dermal microvascular endothelial cells (HDMECs), HDMEC proliferation, migration and angiogenesis were evaluated by CCK8, EdU, wound healing, Transwell and angiogenesis in vitro assays. The relationship among ZEB1, microRNA (miR)-206 and vascular endothelial growth factor A (VEGFA) was assessed by microarray analysis, dual-luciferase, ChIP and RIP assays. Finally, the mechanism of ZEB1 in skin wound healing was confirmed by in vivo experiments. Mechanically, ZEB1 upregulation resulted in miR-206 downregulation by binding to miR-206 promoter, and miR-206 repressed VEGFA expression by directly targeting. ZEB1 overexpression enhanced HDMEC proliferation, migration and angiogenesis, which was neutralized by miR-206 upregulation or VEGFA inhibition. Moreover, ZEB1 significantly promoted skin wound healing in mice, which was negated by overexpression of miR-206. Conclusively, ZEB1 augmented angiogenesis to promote skin wound healing by elevating VEGFA expression via miR-206 repression.


Subject(s)
MicroRNAs , Vascular Endothelial Growth Factor A , Animals , Cell Movement/genetics , Cell Proliferation , Endothelial Cells/metabolism , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Pathologic/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wound Healing/physiology , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
11.
Foods ; 11(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35407061

ABSTRACT

Type 2 diabetes mellitus (T2DM) may lead to abnormally elevated blood glucose, lipid metabolism disorder, and low-grade inflammation. Besides, the development of T2DM is always accompanied by gut microbiota dysbiosis and metabolic dysfunction. In this study, the T2DM mice model was established by feeding a high-fat/sucrose diet combined with injecting a low dose of streptozotocin. Additionally, the effects of oral administration of ethanol extract from Sanghuangporous vaninii (SVE) on T2DM and its complications (including hypoglycemia, hyperlipidemia, inflammation, and gut microbiota dysbiosis) were investigated. The results showed SVE could improve body weight, glycolipid metabolism, and inflammation-related parameters. Besides, SVE intervention effectively ameliorated the diabetes-induced pancreas and jejunum injury. Furthermore, SVE intervention significantly increased the relative abundances of Akkermansia, Dubosiella, Bacteroides, and Parabacteroides, and decreased the levels of Lactobacillus, Flavonifractor, Odoribacter, and Desulfovibrio compared to the model group (LDA > 3.0, p < 0.05). Metabolic function prediction of the intestinal microbiota by PICRUSt revealed that glycerolipid metabolism, insulin signaling pathway, PI3K-Akt signaling pathway, and fatty acid degradation were enriched in the diabetic mice treated with SVE. Moreover, the integrative analysis indicated that the key intestinal microbial phylotypes in response to SVE intervention were strongly correlated with glucose and lipid metabolism-associated biochemical parameters. These findings demonstrated that SVE has the potential to alleviate T2DM and its complications by modulating the gut microbiota imbalance.

12.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35159768

ABSTRACT

Thermal stability, closely associated with the operating temperature, is one of the desired properties for practical applications of organic solar cells (OSCs). In this paper, an OSC of the structure of ITO/PEDOT:PSS/P3HT:PCBM/ZnO/Ag was fabricated, and its current-voltage (J-V) characteristics and operating temperature were measured. The operating temperature of the same OSC was simulated using an analytical model, taking into consideration the heat transfer, charge carrier drift-diffusion and different thermal generation processes. The simulated results agreed well with the experimental ones. It was found that the thermalization of charge carriers above the band gap had the highest influence on the operating temperature of the OSCs. The energy off-set at the donor/acceptor interface in the bulk heterojunction (BHJ) was shown to have a negligible impact on the thermal stability of the OSCs. However, the energy off-sets at the electrode/charge-transporting layer and BHJ/charge-transporting layer interfaces had greater impacts on the operating temperature of OSCs at the short circuit current and maximum power point conditions. Our results revealed that a variation over the energy off-set range from 0.1 to 0.9 eV would induce an almost 10-time increase in the corresponding thermal power generation, e.g., from 0.001 to 0.01 W, in the cells operated at the short circuit current condition, contributing to about 16.7% of the total solar power absorbed in the OSC.

13.
iScience ; 25(1): 103711, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35072005

ABSTRACT

The factors that affect the electrical ideality and photoresponse in near-infrared (NIR) organic phototransistors (OPTs) are still nebulous. Here, simultaneous increase in electrical ideality and NIR response in the OPTs is realized by applying a bulk heterojunction (BHJ) channel. The acceptor in the channel helps to trap the undesirable injected electrons, avoiding the accumulation of the electrons at the active channel/dielectric interface, and thereby improving the hole transporting. Use of a BHJ channel also helps reducing the contact resistance in the OPTs. The electrical stability is then improved with mitigated dependence of charge mobility on gate voltage in the saturation region. The BHJ channel also offers an improved photoresponse through enhanced exciton dissociation, leading to more than one order of magnitude increase in responsivity than that in a control OPT. The results are encouraging, which pave the way for the development of high-performing NIR OPTs.

14.
Front Microbiol ; 13: 1030262, 2022.
Article in English | MEDLINE | ID: mdl-36713179

ABSTRACT

Introduction: This study was conducted to evaluate the effects of fermented feed of Pennisetum giganteum (P. giganteum) on growth performance, oxidative stress, immunity and gastrointestinal microflora of Boer goats under thermal stress. Methods: The study was conducted during 45 days using twenty 2 months Boer goats. The goats were randomly allocated into two groups: NPG (n = 10; normal P. giganteum) and FPG (n = 10; fermented feed of P. giganteum), and the ratio of concentrates to roughage was 3:2. Both groups of animals were kept in sheds and exposed to summer thermal stress from 10:00 h to 18:00 h (temperature and humidity index, THI > 78). At the end of the study, the animals were slaughtered and assessed for various characteristics. Results: The findings from the study revealed that FPG-feeding significantly increased (p < 0.05) average daily gain (ADG, 48.18 g) and carcass weight (4.38 kg), while decreased (p < 0.01) average daily feed intake (ADFI, 0.74 kg/d; p < 0.01) and the feed:gain (F/G, 15.36) ratio. The CAT, GSH-Px activities and GSH in serum, liver and spleen, and the levels of IgA, IgG, IgM, IL-2, IL-4 and IL-1ß in serum of FPG-fed goats were significantly higher (p < 0.05) than those of NPG-feeding goats. Further, we found that FPG feed is rich in nutrients with Lactobacillus (65.83%) and Weissella (17.80%). Results for gastrointestinal microbiota composition showed that FPG-feeding significantly enhanced the abundance of Lactobacillus and unidentified Clostridiales, and reduced Anaerovibrio and Methanobrevibacter. Meanwhile, Spearman's correlation analysis showed that these microbiotas were closely related to the improvement of oxidative stress and immune indexes of goats. Discussion: These results demonstrated that FPG-feeding not only reduces oxidative stress and improves ROS clearance to enhance antioxidant defense system, but also improves gastrointestinal microbiota to enhance immune function by overcoming the adverse effects of heat stress, and further improve growth performance of goats.

15.
ACS Nano ; 15(8): 13674-13682, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34319066

ABSTRACT

The present full-color imaging techniques rely on the use of broadband inorganic photodetectors with dedicated color filters, which is one of the practical challenges for large-area, flexible, and high-solution imaging applications. The development of high-performance color-selective photodetectors is one of the key solutions to overcome this challenge. In this work, an electrically switchable color-selective organic photodetector (OPD) comprising a double organic bulk heterojunction structure has been developed for full-color imaging. The color-selective sensing capability over the visible spectrum ranges can be realized by controlling the bias across the OPD, achieving a high responsivity of ∼200 mA/W, a large linear dynamic range of 122 dB, a viewing angle of 120°, and a -3 dB cutoff frequency of >50 kHz. A full-color imaging function has been demonstrated using electrically switchable red-, green-, and blue-color selective OPD sensors with an excellent operational stability. The results of this work provide a practical solution for applications in high-resolution full-color imaging and artificial vision.

16.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1073-1078, 2021 Mar.
Article in Chinese | MEDLINE | ID: mdl-33787099

ABSTRACT

The study aiming at exploring the potassium-dissolving capacity of rhizosphere potassium-dissolving bacteria from diffe-rent sources and screen the strains with high potassium-dissolving ability, so as to lay a theoretical foundation for cultivation and quality improvement of Paris polyphylla var. yunnanensis sources. The rhizosphere soil of 10 wild and transplanted species from Yunnan, Sichuan and Guizhou provinces was used as the research object. Potassium-dissolving bacteria were isolated and purified, and their potassium-dissolving capacity was determined by flame spectrophotometry, and identified by physiological, biochemical and molecular biological methods. Twenty-six potassium-dissolving bacteria were purified and 13 were obtained from wild and transplanted strains respectively. It was found through the determination of potassium-dissolving capacity that the potassium-dissolving capacity of 26 strains was significantly different, and the mass concentration of K~+ in the fermentation broth were 1.04-2.75 mg·L~(-1), the mcentration of potassium were 0.01-1.82 mg·L~(-1). The strains were identified as Bacillus, Agrobacterium rhizome and Staphylococcus by physiological, biochemical and 16 S rDNA molecular methods, among them Bacillus amylolyticus(4 strains) was the dominant bacterium of Bacillus. The physiology and biochemistry of rhizosphere potassium-dissolving bacteria in P. polyphylla var. yunnanensis rhizosphere were diffe-rent, and the living environment were different, so the potassium-dissolving capacity also changed. Strain Y4-1 with the highest potassium decomposability was Bacillus amylolytic with a potassium increase of 1.82 mg·L~(-1). The potassium-dissolving ability and the distribution of potassium-dissolving bacteria were different in various habitats. The screening of potassium-dissolving bacteria provided a new strain for the preparation of microbial fertilizer. It is expected that B. amyloidococcus Y4-1 can be used as an ideal strain to cultivate mycorrhizal seedlings of P. polyphylla var. yunnanensis.


Subject(s)
Liliaceae , Rhizosphere , China , Paenibacillus , Potassium , Soil
17.
Zhongguo Zhong Yao Za Zhi ; 46(4): 915-922, 2021 Feb.
Article in Chinese | MEDLINE | ID: mdl-33645097

ABSTRACT

The wild resources of Paris polyphylla var. yunnanensis, a secondary endangered medicinal plant, are severely scarce. Introduction and cultivation can alleviate market demand. To screen phosphatolytic bacteria in the rhizosphere soil of P. polyphylla var. yunnanensis and provide data support for the development of high-efficiency microbial fertilizer, in this study, the dilution plate coating method was used to isolate and screen the phosphorus solubilizing bacteria with the ability of mineralizing organic phosphorus from the rhizosphere soil of wild and transplanted varieties of P. polyphylla var. yunnanensis in 10 different locations in Yunnan, Sichuan and Guizhou. After separation and purification, the phosphatolytic capacity was analyzed by qualitative and quantitative analysis. Combined with physiological and biochemical experiments, the strains were identified using 16 S rDNA sequencing analysis. Forty one strains were selected from the rhizosphere soil of P. polyphylla var. yunnanensis from 10 different habitats. Among them, 21 strains were obtained from the rhizosphere soil of the wild variety P. polyphylla var. yunnanensis and 20 strains were obtained from the rhizosphere soil of the transplanted variety. And significance analysis found that 41 organophosphate solubilizing strains had significant differences in their ability to solubilize phosphorus. The amount of phosphate solubilizing was 0.08-67.61 mg·L~(-1), the pH value was between 4.27 and 6.82. The phosphatolytic amount of strain Y3-5 was 67.61 mg·L~(-1), and the phosphorus increase amount was 57.57 mg·L~(-1). All 41 strains were identified as Gram-positive Bacillus. Combining physiological characteristic and phylogenetic trees, Bacillus mobilis Y3-5 was finally selected as the candidate rhizosphere phosphatolytic bacteria of P. polyphylla var. yunnanensis. The distribution of phosphorus solubilizing bacteria in the rhizosphere soil of P. polyphylla var. yunnanensis was different, and there were significant diffe-rences in phosphorus solubility. Organophosphate-dissolving strain Y3-5 is expected to be a candidate strain of P. polyphylla var. yunnanensis microbial fertilizer.


Subject(s)
Liliaceae , Bacillus , Bacteria/genetics , China , Phylogeny
18.
ACS Appl Mater Interfaces ; 13(1): 981-988, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33348986

ABSTRACT

The distinct visible-blind narrowband near-infrared (NIR) photodetection behaviors in the perovskite/polymer hybrid photodetectors (PDs) have been investigated. The narrowband NIR response in the hybrid PDs is realized through the buildup of the space charges at the perovskite/polymer interface. The semiconducting perovskite layer acts as an internal NIR bandpass due to its high absorption to the visible light and high transparency to the NIR light. It also acts as an excellent hole-transporting layer, facilitating the efficient extraction of the holes generated in the low band gap NIR light-absorbing polymer blend layer. The hybrid PDs thus demonstrated have a -3 dB cutoff frequency of 300 kHz, providing an exciting option for a plethora of applications in bioimaging, environmental detection, and security monitoring.

19.
Adv Sci (Weinh) ; 7(14): 2000444, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32714755

ABSTRACT

Short-wavelength infrared (SWIR) photodetection and visualization has profound impacts on different applications. In this work, a large-area organic SWIR photodetector (PD) that is sensitive to SWIR light over a wavelength range from 1000 to 1600 nm and a SWIR visualization device that is capable of upconverting SWIR to visible light are developed. The organic SWIR PD, comprising an organic SWIR sensitive blend of a near-infrared polymer and a nonfullerene n-type small molecule SWIR dye, demonstrates an excellent capability for real-time heart rate monitoring, offering an attractive opportunity for portable and wearable healthcare gadgets. The SWIR-to-visible upconversion device is also demonstrated by monolithic integration of an organic SWIR PD and a perovskite light-emitting diode, converting SWIR (1050 nm) to visible light (516 nm). The most important attribute of the SWIR visualizing device is its solution fabrication capability for large-area SWIR detection and visualization at a low cost. The results are very encouraging, revealing the exciting large-area SWIR photodetection and visualization for a plethora of applications in environmental pollution, surveillance, bioimaging, medical, automotive, food, and wellness monitoring.

20.
Sci Adv ; 6(5): eaaw8065, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32064330

ABSTRACT

We report a dual-mode organic photodetector (OPD) that has a trilayer visible light absorber/optical spacer/near-infrared (NIR) light absorber configuration. In the presence of NIR light, photocurrent is produced in the NIR light-absorbing layer due to the trap-assisted charge injection at the organic/cathode interface at a reverse bias. In the presence of visible light, photocurrent is produced in the visible light-absorbing layer, enabled by the trap-assisted charge injection at the anode/organic interface at a forward bias. A high responsivity of >10 A/W is obtained in both short and long wavelengths. The dual-mode OPD exhibits an NIR light response operated at a reverse bias and a visible light response operated at a forward bias, with a high specific detectivity of ~1013 Jones in both NIR and visible light ranges. A bias-switchable spectral response OPD offers an attractive option for applications in environmental pollution detection, bioimaging process, wellness, and security monitoring in two distinct bands.

SELECTION OF CITATIONS
SEARCH DETAIL
...