Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 44(7): 4170-4178, 2023 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-37438314

ABSTRACT

Microplastic pollution in soil and its toxicological effects have attracted increasing attention from researchers, but the mechanisms of microplastics affecting crop growth and physiology remain unclear. A pot experiment was conducted to evaluate the impacts of various mass concentrations (0%, 0.2%, 5%, and 10%) of low-density polyethylene microplastics (LDPE MPs) on the germination rate, photosynthetic pigment content, biomass, antioxidant enzyme activity, soluble protein, and soluble sugar content of water spinach (Ipomoea aquatica Forsk). The results showed that LDPE MPs significantly inhibited (P<0.05) the seed vigor of water spinach, and the inhibitory effect increased with increasing concentration of LDPE MPs. However, the 5% LDPE MPs significantly promoted the aboveground biomass of water spinach. The 0.2% and 10% LDPE MPs significantly improved the superoxide dismutase (SOD) activity and catalase (CAT) and peroxidase (POD) activities, respectively. Further, malondialdehyde (MDA) content decreased with increasing concentration of LDPE MPs, and the reductions reached 15.53%-27.39% in comparison to that in the control. The LDPE MPs also significantly increased the soluble sugar content of water spinach leaves. In summary, LDPE MPs could inhibit the seed vigor and promote biomass accumulation in water spinach. Water spinach could relieve the oxidative stress caused by LDPE MPs by regulating antioxidant enzyme activity and soluble protein content. Therefore, this study may provide basic information for assessing the influences of microplastics on vegetables.


Subject(s)
Antioxidants , Ipomoea , Antioxidants/pharmacology , Microplastics , Plastics/toxicity , Polyethylene , Sugars
2.
Ying Yong Sheng Tai Xue Bao ; 34(1): 58-66, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36799377

ABSTRACT

Plant residues can affect C:N:P of soil, microbial biomass, and extracellular enzyme, but the effects are still unclear. We conducted a field experiment in an alpine meadow on the eastern part of the Qinghai-Tibetan Plateau to explore the effects of removing aboveground plant or roots and adding plant residues on the C:N:P of soil, microbial biomass, and extracellular enzyme. The results showed that removing aboveground plant biomass significantly decreased soil C:N (the change was -23.7%, the same below) and C:P (-14.7%), microbial biomass C:P and N:P, while significantly increased microbial biomass C:N, and enzyme C:N:P compared with meadow without human disturbance. Removing all plant biomass (aboveground and roots) significantly reduced soil C:N (-11.6%), C:P (-24.0%), N:P (-23.3%) and microbial biomass C:N in comparison to removing aboveground plant, while significantly improved microbial biomass N:P and enzyme N:P. Adding plant residues after removing aboveground plant significantly increased microbial biomass C:N and C:P, enzyme C:N compared with removing aboveground plant, while significantly decreased enzyme N:P. Compared with removing all the plant, adding plant residues after removing whole plant significantly reduced soil C:N (-16.4%), microbial biomass C:P, N:P and enzyme N:P, while significantly increased enzyme C:N. Our results suggest that removal of plants could have a strong effect on C:N:P of soil, microbial biomass, and extracellular enzyme, and C:N:P of microbial biomass and that extracellular enzyme woule be more sensitive to plant residues. Roots could play a key role in stabilizing C:N:P of soil, microbial biomass, and extracellular enzyme under plant residues addition. Adding plant residues could be a suitable solution for restoring alpine meadows under the circumstance of intact roots, which was conducive to soil C storage, but might not be suitable for alpine meadows with serious root damage, which would increase soil CO2 emission.


Subject(s)
Grassland , Soil , Humans , Biomass , Tibet , Soil/chemistry , China , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...