Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Arch Biochem Biophys ; 757: 110013, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670301

ABSTRACT

(1) BACKGROUND: Hashimoto's thyroiditis (HT) can cause angiogenesis in the thyroid gland. However, the molecular mechanism of endothelial cells and angiogenesis related genes (ARGs) has not been extensively studied in HT. (2) METHODS: The HRA001684, GSE29315 and GSE163203 datasets were included in this study. Using single-cell analysis, weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, machine learning algorithms and expression analysis for exploration. And receiver operator characteristic (ROC) curves was draw. Gene set enrichment analysis (GSEA) was utilized to investigate the biological function of the biomarkers. Meanwhile, we investigated into the relationship between biomarkers and different types of immune cells. Additionally, the expression of biomarkers in the TCGA-TC dataset was examined and the mRNA-drug interaction network was constructed. (3) RESULTS: We found 14 cell subtypes were obtained in HT samples after single-cell analysis. A total of 5 biomarkers (CD52, CD74, CD79A, HLA-B and RGS1) were derived, and they had excellent diagnostic performance. Then, 27 drugs targeting biomarkers were predicted. The expression analysis showed that CD74 and HLA-B were significantly up-regulated in HT samples. (4) CONCLUSION: In this study, 5 biomarkers (CD52, CD74, CD79A, HLA-B and RGS1) were screened and their expressions in endothelial cells was compared to offer a new reference for the recognition and management of HT.


Subject(s)
Endothelial Cells , Hashimoto Disease , Neovascularization, Pathologic , Single-Cell Analysis , Transcriptome , Humans , Hashimoto Disease/genetics , Hashimoto Disease/diagnosis , Single-Cell Analysis/methods , Endothelial Cells/metabolism , Neovascularization, Pathologic/genetics , Biomarkers/metabolism , Gene Expression Profiling , Sequence Analysis, RNA/methods , Angiogenesis
2.
Gen Psychiatr ; 37(1): e101209, 2024.
Article in English | MEDLINE | ID: mdl-38292861

ABSTRACT

Background: Cardiovascular risk burden is associated with dementia risk and neurodegeneration-related brain structure, while the role of genetics and incident cardiovascular disease (CVD) remains unclear. Aims: To examine the association of overall cardiovascular risk burden with the risk of major dementia subtypes and volumes of related brain regions in a large sample, and to explore the role of genetics and CVD onset. Methods: A prospective study among 354 654 participants free of CVD and dementia (2006-2010, mean age 56.4 years) was conducted within the UK Biobank, with brain magnetic resonance imaging (MRI) measurement available for 15 104 participants since 2014. CVD risk burden was evaluated by the Framingham General Cardiovascular Risk Score (FGCRS). Dementia diagnosis was ascertained from inpatient and death register data. Results: Over a median 12.0-year follow-up, 3998 all-cause dementia cases were identified. Higher FGCRS was associated with increased all-cause dementia risk after adjusting for demographic, major lifestyle, clinical factors and the polygenic risk score (PRS) of Alzheimer's disease. Comparing the high versus low tertile of FGCRS, the odds ratios (ORs) and 95% confidence intervals (CIs) were 1.26 (1.12 to 1.41) for all-cause dementia, 1.67 (1.33 to 2.09) for Alzheimer's disease and 1.53 (1.07 to 2.16) for vascular dementia (all ptrend<0.05). Incident stroke and coronary heart disease accounted for 14% (95% CI: 9% to 21%) of the association between FGCRS and all-cause dementia. Interactions were not detected for FGCRS and PRS on the risk of any dementia subtype. We observed an 83% (95% CI: 47% to 128%) higher all-cause dementia risk comparing the high-high versus low-low FGCRS-PRS category. For brain volumes, higher FGCRS was associated with greater log-transformed white matter hyperintensities, smaller cortical volume and smaller grey matter volume. Conclusions: Our findings suggest that the positive association of cardiovascular risk burden with dementia risk also applies to major dementia subtypes. The association of cardiovascular risk burden with all-cause dementia is largely independent of CVD onset and genetic predisposition to dementia.

3.
Pediatr Nephrol ; 39(6): 1779-1781, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38030834

ABSTRACT

Acute kidney injury (AKI) is a common complication in children with hematological malignancies. Although AKI due to infiltration of tumor cells in children is rare, it negatively impacts treatment outcomes and increases the risk of mortality. We introduce a case of a child with acute lymphoblastic leukemia (ALL) who experienced kidney relapse resulting in asymptomatic AKI after remission from treatment, to remind clinicians not to overlook the primary disease in clinical judgment. In cases of unexplained AKI, kidney biopsy should be performed when feasible to get an accurate diagnosis and scientific treatment. In brief, children with leukemia who have achieved remission after treatment still need regular monitoring of urine routine and kidney function.


Subject(s)
Acute Kidney Injury , Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Treatment Outcome , Recurrence
4.
J Med Primatol ; 52(6): 384-391, 2023 12.
Article in English | MEDLINE | ID: mdl-37807223

ABSTRACT

OBJECTIVE: Rhesus monkeys are increasingly used in biomedical research, which makes their hematological and biochemical parameters increasingly important in preclinical research. Since age and sex can influence blood parameters, establishing reference intervals for such parameters based on age and sex becomes along with identifying the effect of age and sex on those parameters. METHODS: A total of 1385 healthy Chinese rhesus monkeys (548 males and 837 females) anesthetized with ketamine were selected and segregated by age (six groups) and sex. A total of 21 hematological and 26 biochemical parameters were measured, and the effects of age and sex were analyzed. RESULTS: We established baseline indices for hematological and biochemical parameters based on age and sex, separately, and observed significant impacts of age, sex, and age-sex interactions on blood parameters. Among different age groups, significant differences were found in WBC, NEUT%, LYM%, EO%, LYM#, EO#, MCV, RDW-CV, PLT, MPV, PDW, PCT, TP, Alb, GLB, A/G, ALT, AST, ALP, TBIL, GGT, BUN, Cre, GLU, CK, TRIG, LDL, HCY, IL-6 FOL, Vit B12, VIT D-T, PTH, and AMH. Additionally, significant differences were observed in RBC, HGB, HCT, MPV, Alb, BUN, Cre, GLU, CHOL, TRIG, HDL, LDL, HCY, and VIT D-T between the two sexes. An age-sex interaction exerted a significant effect on WBC, NEUT#, MCV, MCHC, PDW, GLB, ALP, Cre, CHOL, TRIG, HDL, LDL, HCY, IL-6, Vit B12, VIT D-T. However, neither age, sex, and age-sex interactions exerted significant effects on MO%, MOMO#, MCH, RDW-SD, CRP, and CT. CONCLUSION: Our study investigated the blood parameters of rhesus monkeys to provide a reference basis for rhesus monkey-related scientific experimental research.


Subject(s)
Ketamine , Male , Female , Animals , Macaca mulatta , Ketamine/pharmacology , Interleukin-6
5.
Oncol Lett ; 26(3): 396, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37600346

ABSTRACT

Thyroid cancer (TC) is a broad classification of neoplasms that includes differentiated thyroid cancer (DTC) as a common histological subtype. DTC is characterized by an increased mortality rate in advanced stages, which contributes to the overall high mortality rate of DTC. This progression is mainly attributed to alterations in molecular driver genes, resulting in changes in phenotypes such as invasion, metastasis and dedifferentiation. Clinical management of DTC is challenging due to insufficient diagnostic and therapeutic options. The advent of-omics technology has presented a promising avenue for the diagnosis and treatment of DTC. Identifying molecular markers that can predict the early progression of DTC to a late adverse outcome is essential for precise diagnosis and treatment. The present review aimed to enhance our understanding of DTC by integrating big data with biological systems through-omics technology, specifically transcriptomics and proteomics, which can shed light on the molecular mechanisms underlying carcinogenesis.

6.
Am J Med Genet A ; 191(12): 2850-2855, 2023 12.
Article in English | MEDLINE | ID: mdl-37571997

ABSTRACT

Oligomeganephronia (OMN) is a rare congenital renal hypoplasia reported more often in children than in adults. The diagnosis of OMN relies on renal biopsy and exhibits a significant reduction in the number of glomeruli and pronounced glomerular hypertrophy. Here, we report the case of an 8-year-old boy with recurrent proteinuria and abnormal external ears. A renal biopsy revealed large and rare glomeruli. The histological findings confirmed the diagnosis of OMN. Whole-exome sequencing of the patient revealed a new pathogenic variant in PBX1 (hg19, NM_002585, c.262delA, p.Thr88Glnfs*3). The PBX1 gene encodes a transcription factor whose pathogenic variants can result in congenital renal and urinary system anomalies, with or without hearing loss, abnormal ears, and developmental retardation (CAKUTED). This is the first report to detect PBX1 pathogenic variants in children with OMN, a novel phenotype of human PBX1 pathogenic variants. We performed functional prediction analyses of deletions in the corresponding structural domains. We summarized 27 cases of PBX1 single pathogenic variants reported between 2003 and 2023 in terms of truncating and missense pathogenic variants, which can deepen our understanding of the PBX1 structural domain and expand our knowledge of the PBX1 genotype and phenotype.


Subject(s)
Kidney Diseases , Kidney , Male , Child , Adult , Humans , Exome Sequencing , Kidney/abnormalities , Kidney Diseases/pathology , Transcription Factors , Proteinuria/pathology
7.
Rejuvenation Res ; 25(5): 223-232, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35876435

ABSTRACT

Senile thymus atrophy is an important factor leading to decreased immune function. Repairing the atrophic thymus tissue structure, rebuilding immune function, and replenishing the number of exogenous stem cells may be ideal methods. In this study, bone marrow mesenchymal stem cells were intravenously infused into elderly macaques. We found that thymus volume was substantially increased, some thymus tissue regeneration was observed, the degree of thymus tissue fibrosis decreased, collagen fiber deposition decreased, cortical and medulla structures emerged gradually, the number of apoptotic cells decreased significantly, and the expression of apoptosis-related proteins decreased. For the effects of stem cell therapy on aging-related genes, we performed transcriptomic analysis of thymus tissue. The results show the expression pattern of the tissue transcriptome tended to be similar to the thymus expression pattern in young macaques compared with the elderly group, reverse aging-related proteins. Based on the results, it is suggested that stem cell therapy is an ideal method to prevent or reverse the aging of the thymus.


Subject(s)
Mesenchymal Stem Cells , Rejuvenation , Animals , Macaca , Thymus Gland , Collagen
8.
Mol Genet Genomics ; 297(4): 1049-1061, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35612621

ABSTRACT

OBJECTIVE: Hereditary factors are the main cause of pediatric nephrolithiasis (NL)/nephrocalcinosis (NC). We summarized the genotype-phenotype correlation of hereditary NL/NC in our center, to evaluate the role of genetic testing in early diagnosis. METHODS: The clinical data of 32 NL/NC cases, which were suspected to have an inherited basis, were retrospectively analyzed from May 2017 to August 2020. The trio-whole exome sequencing was used as the main approach for genetic testing, variants were confirmed by Sanger sequencing, and pathogenicity analysis according to protein function was predicted with custom-developed software. RESULTS: Causative monogenic mutations were detected in 24 of 32 NL/NC patients, and copy number variation was detected in one patient. A summary of manifestations in patients with inherited diseases revealed a significant degree of growth retardation, increased urinary excretion of the low-molecular weight protein, hypercalciuria, electrolyte imbalances, and young age of onset to be common in heredity disease. In addition, some patients had abnormal renal function (3 ppm 25). The most frequent pathology identified was distal renal tubular acidosis (with inclusion of SLC4A1, ATP6V1B1, and ATP6VOA4 genes), followed by Dent disease (CLCN5 and OCRL1 genes), primary hyperoxaluria (PH) (AGXT and HOGA1 genes) and Kabuki syndrome (KMT2D gene), which was more likely to present as NC or recurrent stone and having a higher correlation with a specific biochemical phenotype and extrarenal phenotype. CONCLUSION: The etiology of NL/NC is heterogeneous. This study explored in depth the relationship between phenotype and genotype in 32 patients, and confirmed that genetic testing and clinical phenotype evaluation enable the precision medicine approach to treating patients.


Subject(s)
Nephrocalcinosis , Nephrolithiasis , Pediatrics , Vacuolar Proton-Translocating ATPases , Child , DNA Copy Number Variations , Genetic Testing , Humans , Mutation , Nephrocalcinosis/genetics , Nephrolithiasis/diagnosis , Nephrolithiasis/genetics , Precision Medicine , Retrospective Studies , Vacuolar Proton-Translocating ATPases/genetics
10.
Front Neurosci ; 16: 886858, 2022.
Article in English | MEDLINE | ID: mdl-35592254

ABSTRACT

Animal contextual fear conditioning (CFC) models are the most-studied forms used to explore the neural substances of posttraumatic stress disorder (PTSD). In addition to the well-recognized hippocampal-amygdalar system, the retrosplenial cortex (RSC) is getting more and more attention due to substantial involvement in CFC, but with a poor understanding of the specific roles of its two major constituents-dysgranular (RSCd) and granular (RSCg). The current study sought to identify their roles and underlying brain network mechanisms during the encoding processing of the rat CFC model. Rats with pharmacologically inactivated RSCd, RSCg, and corresponding controls underwent contextual fear conditioning. [18F]-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scanning was performed for each animal. The 5-h and 24-h retrieval were followed to test the formation of contextual memory. Graph theoretic tools were used to identify the brain metabolic network involved in encoding phase, and changes of nodal (brain region) properties linked, respectively, to disturbed RSCd and RSCg were analyzed. Impaired retrieval occurred in disturbed RSCd animals, not in RSCg ones. The RSC, hippocampus (Hip), amygdala (Amy), piriform cortex (Pir), and visual cortex (VC) are hub nodes of the brain-wide network for contextual fear memory encoding in rats. Nodal degree and efficiency of hippocampus and its connectivity with amygdala, Pir, and VC were decreased in rats with disturbed RSCd, while not in those with suppressed RSCg. The RSC plays its role in contextual fear memory encoding mainly relying on its RSCd part, whose condition would influence the activity of the hippocampal-amygdalar system.

13.
Stem Cell Res Ther ; 12(1): 460, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34407863

ABSTRACT

BACKGROUND: Female sex hormone secretion and reproductive ability decrease with ageing. Bone marrow mesenchymal stem cells (BMMSCs) have been postulated to play a key role in treating ovarian ageing. METHODS: We used macaque ovarian ageing models to observe the structural and functional changes after juvenile BMMSC treatment. Moreover, RNA-seq was used to analyse the ovarian transcriptional expression profile and key pathways through which BMMSCs reverse ovarian ageing. RESULTS: In the elderly macaque models, the ovaries were atrophied, the regulation ability of sex hormones was reduced, the ovarian structure was destroyed, and only local atretic follicles were observed, in contrast with young rhesus monkeys. Intravenous infusion of BMMSCs in elderly macaques increased ovarian volume, strengthened the regulation ability of sex hormones, reduced the degree of pulmonary fibrosis, inhibited apoptosis, increased density of blood vessels, and promoted follicular regeneration. In addition, the ovarian expression characteristics of ageing-related genes of the elderly treatment group reverted to that of the young control group, 1258 genes that were differentially expressed, among which 415 genes upregulated with age were downregulated, 843 genes downregulated with age were upregulated after BMMSC treatment, and the top 20 differentially expressed genes (DEGs) in the protein-protein interaction (PPI) network were significantly enriched in oocyte meiosis and progesterone-mediated oocyte maturation pathways. CONCLUSION: The BMMSCs derived from juvenile macaques can reverse ovarian ageing in elderly macaques.


Subject(s)
Mesenchymal Stem Cells , Animals , Bone Marrow Cells , Cellular Senescence , Female , Macaca mulatta , Ovarian Follicle , Ovary
14.
Stem Cell Res Ther ; 12(1): 156, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33648583

ABSTRACT

BACKGROUND: Age-associated lung tissue degeneration is a risk factor for lung injury and exacerbated lung disease. It is also the main risk factor for chronic lung diseases (such as COPD, idiopathic pulmonary fibrosis, cancer, among others). So, it is particularly important to find new anti-aging treatments. METHODS: We systematically screened and evaluated elderly senile multiple organ dysfunction macaque models to determine whether BMMSCs inhibited lung tissue degeneration. RESULTS: The average alveolar area, mean linear intercept (MLI), and fibrosis area in the elderly macaque models were significantly larger than in young rhesus monkeys (p < 0.05), while the capillary density around the alveoli was significantly low than in young macaque models (p < 0.05). Intravenous infusion of BMMSCs reduced the degree of pulmonary fibrosis, increased the density of capillaries around the alveoli (p < 0.05), and the number of type II alveolar epithelium in elderly macaques (p < 0.05). In addition, the infusion reduced lung tissue ROS levels, systemic and lung tissue inflammatory levels, and Treg cell ratio in elderly macaque models (p < 0.05). Indirect co-cultivation revealed that BMMSCs suppressed the expression of senescence-associated genes, ROS levels, apoptosis rate of aging type II alveolar epithelial cells (A549 cells), and enhanced their proliferation (p < 0.05). CONCLUSIONS: BMMSC treatment inhibited age-associated lung tissue degeneration.


Subject(s)
Idiopathic Pulmonary Fibrosis , Mesenchymal Stem Cells , Animals , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/therapy , Lung , Macaca , Pulmonary Alveoli
15.
Ibrain ; 7(3): 245-256, 2021 Sep.
Article in English | MEDLINE | ID: mdl-37786797

ABSTRACT

Ischemic stroke is a serious cerebrovascular disease with high morbidity, disability and mortality. There is no doubt that the disease has a severe impact on the physical and mental health and quality of life of patients, as well as impose a heavy burden on families and societies. Unfortunately, there has been a lack of effective treatment. This overview reviews the pathophysiology of stem cell therapy in Ischemic stroke, and discuss its effects on neurogenesis, the latest clinical trials, and advances in tracking and monitoring of endogenous and exogenous stem cells.

16.
Methods Mol Biol ; 1617: 261-280, 2017.
Article in English | MEDLINE | ID: mdl-28540691

ABSTRACT

MicroRNA (miRNA) are negative regulators of gene expression and subsequent protein production. This method of action translates into regulatory control over cellular processes, including development, signaling, metabolism, and apoptosis. A broad range of miRNA are shown to have abnormal expressions in thyroid cancers which could explain the pathology of tumor oncogenesis and disease progression. A review is conducted of the current research on miRNA dysregulation in thyroid cancers, including papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), anaplastic thyroid cancer (ATC), and medullary thyroid carcinoma (MTC). Dysregulated miRNA and their associated regulatory pathways are identified and their oncogenic and pathological significance are discussed.


Subject(s)
Adenocarcinoma, Follicular/genetics , Carcinoma, Neuroendocrine/genetics , Carcinoma, Papillary/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/genetics , Adenocarcinoma, Follicular/pathology , Animals , Carcinoma, Neuroendocrine/pathology , Carcinoma, Papillary/pathology , Humans , Thyroid Cancer, Papillary , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Gland/metabolism , Thyroid Gland/pathology , Thyroid Neoplasms/pathology
17.
Med Sci Monit ; 23: 121-128, 2017 Jan 09.
Article in English | MEDLINE | ID: mdl-28065931

ABSTRACT

BACKGROUND Myocardial fibrosis is the result of persistent anoxia and ischemic myocardial fibers caused by coronary atherosclerotic stenosis, which lead to heart failure, threatening the patient's life. This study aimed to explore the regulatory role of intermedin 1-53 (IMD1-53) in cardiac fibrosis using neonatal rat cardiac fibroblasts and a myocardial infarction (MI) rat model both in vitro and in vivo. MATERIAL AND METHODS The Western blot method was used to detect the protein expression of collagen I and collagen III in myocardial fibroblasts. The SYBR Green I real-time quantitative polymerase chain reaction (PCR) assay was used to detect the mRNA expression of collagen type I and III, IMD1-53 calcitonin receptor-like receptor (CRLR), transforming growth factor-ß (TGF-ß), and matrix metalloproteinase-2 (MMP-2). Masson staining was used to detect the area changes of myocardial fibrosis in MI rats. RESULTS Results in vivo showed that IMD1-53 reduced the scar area on the heart of MI rats and inhibited the expression of collagen type I and III both in mRNA and protein. Results of an in vitro study showed that IMD1-53 inhibited the transformation of cardiomyocytes into myofibroblasts caused by angiotensin II (Ang II). The further mechanism study showed that IMD1-53 inhibited the expression of TGF-ß and the phosphorylation of smad3, which further up-regulated the expression of MMP-2. CONCLUSIONS IMD1-53 is an effective anti-fibrosis hormone that inhibits cardiac fibrosis formation after MI by down-regulating the expression of TGF-ß and the phosphorylation of smad3, blocking fibrous signal pathways, and up-regulating the expression of MMP-2, thereby demonstrating its role in regression of myocardial fibrosis.


Subject(s)
Adrenomedullin/metabolism , Adrenomedullin/pharmacology , Fibroblasts/pathology , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardium/pathology , Neuropeptides/metabolism , Neuropeptides/pharmacology , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Collagen/biosynthesis , Collagen/genetics , Down-Regulation , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis , Heart Failure/metabolism , Male , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardium/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
18.
J Clin Lab Anal ; 31(5)2017 Sep.
Article in English | MEDLINE | ID: mdl-27801524

ABSTRACT

OBJECTIVE: The purpose of this article was to investigate whether the combination of urinary beta 2 microglobulin (urinary ß2 -MG) and procalcitonin (PCT) diagnosis could enhance the localization diagnostic precision of pediatric urinary tract infection comparing with single diagnosis. METHODS: A study was conducted in the Nephrology Department of Wuhan women and children's health care centre. This study incorporated 85 participants, including 35 children who were diagnosed as upper urinary tract infection (UUTI) with the symptom of fever and 50 children who conducted lower urinary tract infection (LUTI). Levels of PCT and urinary ß2 -MG in both UUTI and LUTI patients were measured and compared. RESULTS: The level of PCT and ß2 -MG were both significantly higher in UUTI group compared with in LUTI group. AUC of urinary ß2 -MG ROC (sensitivity of 71.4%, specificity of 90.0%) was significantly smaller than that of PCT ROC (sensitivity of 77.1%, specificity of 96.0%) in the single diagnosis. Although in the combined diagnosis, the sensitivity and specificity increased to 88.6% and 98%, respectively. CONCLUSIONS: Both PCT and ß2 -MG could be used to localize the UTI. Introducing urinary ß2 -MG into PCT diagnosis could increase the sensitivity and specificity of UTI lesion diagnosis in clinical practice.


Subject(s)
Calcitonin/urine , Urinary Tract Infections/diagnosis , Urinary Tract Infections/urine , beta 2-Microglobulin/urine , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , ROC Curve , Sensitivity and Specificity , Urinary Tract Infections/classification
19.
Beilstein J Nanotechnol ; 7: 364-373, 2016.
Article in English | MEDLINE | ID: mdl-27335730

ABSTRACT

Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl)porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis.

20.
Photochem Photobiol Sci ; 13(2): 231-40, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24096539

ABSTRACT

Numerous proteases are known to be necessary for cancer development and progression including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins. The goal of this research is to develop an Fe/Fe3O4 nanoparticle-based system for clinical diagnostics, which has the potential to measure the activity of cancer-associated proteases in biospecimens. Nanoparticle-based "light switches" for measuring protease activity consist of fluorescent cyanine dyes and porphyrins that are attached to Fe/Fe3O4 nanoparticles via consensus sequences. These consensus sequences can be cleaved in the presence of the correct protease, thus releasing a fluorescent dye from the Fe/Fe3O4 nanoparticle, resulting in highly sensitive (down to 1 × 10(-16) mol l(-1) for 12 proteases), selective, and fast nanoplatforms (required time: 60 min).


Subject(s)
Enzyme Assays/methods , Magnetite Nanoparticles/chemistry , Nanotechnology/methods , Neoplasms/enzymology , Peptide Hydrolases/metabolism , Spectrometry, Fluorescence/methods , Calibration , Carbocyanines/chemistry , Consensus Sequence , Fluorescence Resonance Energy Transfer , Matrix Metalloproteinase 13/chemistry , Matrix Metalloproteinase 13/metabolism , Peptide Hydrolases/chemistry , Porphyrins/chemistry , Reproducibility of Results , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...