Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 9(13): 7480-7496, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31346417

ABSTRACT

Although the Masson pine moth, Dendrolimus punctatus, is one of the most destructive forest pest insects and is an endemic condition in China, we still do not fully understand the patterns of how its distribution range varies in response to Quaternary climatic oscillations. Here, we sequenced one maternally inherited mitochondrial gene (COI) and biparentally inherited nuclear data (ITS1 and ITS2) among 23 natural populations across the entire range of the species in China. A total of 51 mitotypes and 38 ribotypes were separately obtained using mtDNA and ITS1 data. Furthermore, significant phylogeographical structure (N ST > G ST, p < 0.01) were detected. The spatial distribution of mitotypes implied that two distinct groups existed in the species: one in the southwest distribution, including 10 locations, and the other located in the northeast region of China. It is suggested, therefore, that each group was derived from ancestors that occupied different isolated refugia during previous periods, possibly last glacial maximum. Mismatch distribution and Bayesian population dynamics analysis suggested the population size underwent sudden expansion, which is consistent with the results of ecological niche modeling. As a typical phytophagous insect, the history of population expansion was in accordance with the host plants, providing abundant food resources and habitat. Intraspecific success rate of barcoding identification was lower than interspecific ones, indicating a level of difficulty in barcoding individuals from different populations. However, it still provides an early insight into the pattern of genetic diversity within a species. OPEN RESEARCH BADGES: This article has been awarded an Open Data and Open Materials. All materials and data are publicly accessible via the Open Science Framework at https://doi.org/10.5061/dryad.2df87g2. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.

2.
Sci Rep ; 6: 26268, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27199260

ABSTRACT

Potential distributions of endemic relic shrubs in western Ordos were poorly mapped, which hindered our implementation of proper conservation. Here we investigated the applicability of ecological niche modeling for endangered relic shrubs to detect areas of priority for biodiversity conservation and analyze differences in ecological niche spaces used by relic shrubs. We applied ordination and niche modeling techniques to assess main environmental drivers of five endemic relic shrubs in western Ordos, namely, Ammopiptanthus mongolicus, Amygdalus mongolica, Helianthemum songaricum, Potaninia mongolica, and Tetraena mongolica. We calculated niche overlap metrics in gridded environmental spaces and compared geographical projections of ecological niches to determine similarities and differences of niches occupied by relic shrubs. All studied taxa presented different responses to environmental factors, which resulted in a unique combination of niche conditions. Precipitation availability and soil quality characteristics play important roles in the distributions of most shrubs. Each relic shrub is constrained by a unique set of environmental conditions, the distribution of one species cannot be implied by the distribution of another, highlighting the inadequacy of one-fits-all type of conservation measure. Our stacked habitat suitability maps revealed regions around Yellow River, which are highly suitable for most species, thereby providing high conservation value.


Subject(s)
Conservation of Natural Resources , Ecosystem , Magnoliopsida/physiology , China , Endangered Species , Geography , Rain , Soil
3.
Sci Rep ; 6: 23192, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26996353

ABSTRACT

Invasive species' Pleistocene history contains much information on its present population structure, dispersability and adaptability. In this study, the Pleistocene history of a global invasive pest (Brown Marmorated Stink Bug BMSB, Halyomorpha halys) was unveiled using the coupled approach of phylogeography and ecological niche modelling. Rangewide molecular data suggests that the Taiwan and other native populations had diverged in mid-Pleistocene. In mainland China, the native BMSB did not experience population contraction and divergence during last glacial, but persisted in interconnected populations. Combined Bayesian Skyline Plot (BSP) and niche modelling revealed a rapid expansion occurred during the transition of Last Inter Glacial (LIG) to Last Glacial Maximum (LGM). High genetic diversity and multi-reticular haplotypes network exist in the original sources populations of BMSB invasion in northern China. They were speculated to be colonized from the central China, with many derived haplotypes evolved to adapt the novel environment. The ENM future prediction suggest that BMSB may expand northward to higher latitudes in the US and Europe, because of its high invasive ability, together with the available suitable climate space there.


Subject(s)
Heteroptera/genetics , Introduced Species , Animal Distribution , Animals , Bayes Theorem , China , DNA, Mitochondrial/genetics , Evolution, Molecular , Genes, Insect , Genetic Variation , Introduced Species/trends , Japan , Models, Genetic , Molecular Typing , Phylogeny , Phylogeography , Population Density , Principal Component Analysis , Republic of Korea , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...