Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gastric Cancer ; 24(2): 402-416, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33159601

ABSTRACT

BACKGROUND: Aberrant activation of Wnt/ß-catenin signaling by dysregulated post-translational protein modifications, especially ubiquitination is causally linked to cancer development and progression. Although Lys48-linked ubiquitination is known to regulate Wnt/ß-catenin signaling, it remains largely obscure how other types of ubiquitination, such as linear ubiquitination governs its signaling activity. METHODS: The expression and regulatory mechanism of linear ubiquitin chain assembly complex (LUBAC) on Wnt/ß-catenin signaling was examined by immunoprecipitation, western blot and immunohistochemical staining. The ubiquitination status of ß-catenin was detected by ubiquitination assay. The impacts of SHARPIN, a core component of LUBAC on malignant behaviors of gastric cancer cells were determined by various functional assays in vitro and in vivo. RESULTS: Unlike a canonical role in promoting linear ubiquitination, SHARPIN specifically interacts with ß-catenin to maintain its protein stability. Mechanistically, SHARPIN competes with the E3 ubiquitin ligase ß-Trcp1 for ß-catenin binding, thereby decreasing ß-catenin ubiquitination levels to abolish its proteasomal degradation. Importantly, SHARPIN is required for invasiveness and malignant growth of gastric cancer cells in vitro and in vivo, a function that is largely dependent on its binding partner ß-catenin. In line with these findings, elevated expression of SHARPIN in gastric cancer tissues is associated with disease malignancy and correlates with ß-catenin expression levels. CONCLUSIONS: Our findings reveal a novel molecular link connecting linear ubiquitination machinery and Wnt/ß-catenin signaling via SHARPIN-mediated stabilization of ß-catenin. Targeting the linear ubiquitination-independent function of SHARPIN could be exploited to inhibit the hyperactive ß-catenin signaling in a subset of human gastric cancers.


Subject(s)
Carcinogenesis/genetics , Stomach Neoplasms/genetics , Ubiquitination/genetics , Ubiquitins/genetics , beta Catenin/genetics , Humans , Wnt Signaling Pathway/genetics
2.
Cancer Res ; 79(19): 4869-4881, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31311807

ABSTRACT

Cancer metastasis, a leading cause of death in patients, is associated with aberrant expression of epigenetic modifiers, yet it remains poorly defined how epigenetic readers drive metastatic growth and whether epigenetic readers are targetable to control metastasis. Here, we report that bromodomain-containing protein 4 (BRD4), a histone acetylation reader and emerging anticancer therapeutic target, promotes progression and metastasis of gastric cancer. The abundance of BRD4 in human gastric cancer tissues correlated with shortened metastasis-free gastric cancer patient survival. Consistently, BRD4 maintained invasiveness of cancer cells in vitro and their dissemination at distal organs in vivo. Surprisingly, BRD4 function in this context was independent of its putative transcriptional targets such as MYC or BCL2, but rather through stabilization of Snail at posttranslational levels. In an acetylation-dependent manner, BRD4 recognized acetylated lysine 146 (K146) and K187 on Snail to prevent Snail recognition by its E3 ubiquitin ligases FBXL14 and ß-Trcp1, thereby inhibiting Snail polyubiquitination and proteasomal degradation. Accordingly, genome-wide transcriptome analyses identified that BRD4 and Snail regulate a partially shared metastatic gene signature in gastric cancer cells. These findings reveal a noncanonical posttranscriptional regulatory function of BRD4 in maintaining cancer growth and dissemination, with immediate translational implications for treating gastric metastatic malignancies with clinically available bromodomain inhibitors. SIGNIFICANCE: These findings reveal a novel posttranscriptional regulatory function of the epigenetic reader BRD4 in cancer metastasis via stabilizing Snail, with immediate translational implication for treating metastatic malignancies with clinically available bromodomain inhibitors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/19/4869/F1.large.jpg.


Subject(s)
Cell Cycle Proteins/metabolism , Neoplasm Invasiveness/pathology , Snail Family Transcription Factors/metabolism , Stomach Neoplasms/pathology , Transcription Factors/metabolism , Acetylation , Animals , Disease Progression , Epigenesis, Genetic/physiology , Gene Expression Regulation, Neoplastic/physiology , Humans , Mice , Transcriptome
3.
Neurochem Res ; 42(2): 360-374, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27743286

ABSTRACT

Temporal lobe epilepsy (TLE) is one of the most refractory types of adult epilepsy, and treatment options remain unsatisfactory. Gastrodin (GAS), a phenolic glucoside used in Chinese herbal medicine and derived from Gastrodia elata Blume, has been shown to have remarkable anticonvulsant effects on various models of epilepsy in vivo. However, the mechanisms of GAS as an anticonvulsant drug remain to be established. By utilizing a combination of behavioral surveys, immunofluorescence and electrophysiological recordings, the present study characterized the anticonvulsant effect of GAS in a pilocarpine-induced status epilepticus (SE) rat model of TLE and explored the underlying cellular mechanisms. We found that GAS pretreatment effectively reduced the severity of SE in the acute phase of TLE. Moreover, GAS protected medial entorhinal cortex (mEC) layer III neurons from neuronal death and terminated the SE-induced bursting discharge of mEC layer II neurons from SE-experienced rats. Furthermore, the current study revealed that GAS prevented the pilocarpine-induced enhancement of Nav1.6 currents (persistent (INaP) and resurgent (INaR) currents), which were reported to play a critical role in the generation of bursting spikes. Consistent with this result, GAS treatment reversed the expression of Nav1.6 protein in SE-experienced EC neurons. These results suggest that the inhibition of Nav1.6 sodium currents may be the underlying mechanism of GAS's anticonvulsant properties.


Subject(s)
Benzyl Alcohols/therapeutic use , Epilepsy, Temporal Lobe/drug therapy , Glucosides/therapeutic use , NAV1.6 Voltage-Gated Sodium Channel/physiology , Pilocarpine/toxicity , Sodium Channel Blockers/therapeutic use , Status Epilepticus/drug therapy , Animals , Benzyl Alcohols/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Epilepsy, Temporal Lobe/physiopathology , Glucosides/pharmacology , Male , Rats , Rats, Sprague-Dawley , Severity of Illness Index , Sodium Channel Blockers/pharmacology , Status Epilepticus/chemically induced , Status Epilepticus/physiopathology
4.
Neuroscience ; 337: 355-369, 2016 Nov 19.
Article in English | MEDLINE | ID: mdl-27670903

ABSTRACT

Rhynchophylline (RIN) is a significant active component isolated from the Chinese herbal medicine Uncaria rhynchophylla. Several studies have demonstrated that RIN has a significant anticonvulsant effect in many types of epilepsy models in vivo. However, the mechanisms of the anticonvulsant effect remain elusive. Using combined methods of behavioral testing, immunofluorescence and electrophysiological recordings, we characterized the anticonvulsant effect of RIN in a pilocarpine-induced status epilepticus (SE) rat model of temporal lobe epilepsy (TLE) and investigated the underlying cellular mechanisms. In one set of experiments, rats received RIN treatment prior to pilocarpine injection. In a second set of experiments, rats received RIN treatment following the onset of stage 3 seizures. Pretreatment and posttreatment with RIN effectively reduced the seizure severity in the acute phase of TLE. Furthermore, RIN protected medial entorhinal cortex (mEC) layer III neurons from neuronal death and terminated spontaneous epileptiform discharge of mEC layer II neurons in SE-experienced rats. Whole-cell voltage-clamp recordings indicated that RIN inhibited neuronal hyperexcitability via inhibition of the persistent sodium current (INaP) and NMDA receptor current. Immunofluorescence experiments also demonstrated that RIN rectified the pilocarpine-induced upregulation of Nav1.6 and NR2B protein expression. In conclusion, our results identified RIN as an anticonvulsant agent that inhibited ictal discharge via INap and NMDA receptor current inhibition.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy, Temporal Lobe/drug therapy , Indole Alkaloids/pharmacology , Receptors, N-Methyl-D-Aspartate/drug effects , Sodium/metabolism , Animals , Disease Models, Animal , Entorhinal Cortex/drug effects , Epilepsy, Temporal Lobe/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Neurons/metabolism , Oxindoles , Pilocarpine/pharmacology , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Status Epilepticus/chemically induced
5.
Amyloid ; 22(1): 36-44, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25472656

ABSTRACT

Abnormal accumulation of soluble amyloid beta (Aß) is believed to cause malfunction of neurons in Alzheimer's disease (AD). The hippocampus is one of the earliest affected brain regions in AD. However, little effort has been made to investigate the effects of soluble Aß1-42 oligomers on discharge properties of hippocampal neurons in vivo. This study was designed to examine the effects of soluble Aß1-42 oligomers on the discharge properties of hippocampal CA1 neurons using extracellular single-unit recordings in vivo. The protective effects of riluzole (RLZ) were also investigated for the prevention of soluble oligomers of Aß1-42-induced alterations in the spontaneous discharge of hippocampal neurons. The results showed that (1) the mean frequency of spontaneous discharge was increased by the local application of 100 µM Aß1-42 oligomers; (2) Aß1-42 oligomers also induced alterations of the neuronal firing patterns in the hippocampal CA1 region; and (3) pretreatment with 20 µM RLZ effectively inhibited the Aß1-42-induced enhancement of spontaneous discharge and alterations of neuronal firing patterns in CA1 neurons. Our study suggested that Aß1-42 oligomers induced hyperactivity and perturbed the firing patterns in hippocampal neurons. RLZ may provide neuroprotective effects on the Aß1-42-induced perturbation of neuronal activities in the hippocampal region of rats.


Subject(s)
Amyloid beta-Peptides/physiology , CA1 Region, Hippocampal/physiopathology , Neuroprotective Agents/pharmacology , Peptide Fragments/physiology , Riluzole/pharmacology , Action Potentials , Alzheimer Disease/drug therapy , Animals , CA1 Region, Hippocampal/drug effects , Drug Evaluation, Preclinical , Male , Rats, Sprague-Dawley
6.
IEEE Trans Image Process ; 16(7): 1831-9, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17605381

ABSTRACT

With the development of numerous imaging sensors, many images can be simultaneously pictured by various sensors. However, there are many scenarios where no one sensor can give the complete picture. Image fusion is an important approach to solve this problem and produces a single image which preserves all relevant information from a set of different sensors. In this paper, we proposed a new image fusion method using the support value transform, which uses the support value to represent the salient features of image. This is based on the fact that, in support vector machines (SVMs), the data with larger support values have a physical meaning in the sense that they reveal relative more importance of the data points for contributing to the SVM model. The mapped least squares SVM (mapped LS-SVM) is used to efficiently compute the support values of image. The support value analysis is developed by using a series of multiscale support value filters, which are obtained by filling zeros in the basic support value filter deduced from the mapped LS-SVM to match the resolution of the desired level. Compared with the widely used image fusion methods, such as the Laplacian pyramid, discrete wavelet transform methods, the proposed method is an undecimated transform-based approach. The fusion experiments are undertaken on multisource images. The results demonstrate that the proposed approach is effective and is superior to the conventional image fusion methods in terms of the pertained quantitative fusion evaluation indexes, such as quality of visual information (Q(AB/F)), the mutual information, etc.


Subject(s)
Algorithms , Artificial Intelligence , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Subtraction Technique
7.
Opt Express ; 14(24): 11839-47, 2006 Nov 27.
Article in English | MEDLINE | ID: mdl-19529607

ABSTRACT

A novel scheme for an ultrahigh-speed all-optical half adder based on four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) is proposed. This scheme is free of pattern effect, due to using the polarization-shift-keying (PolSK) modulation format. By numerical simulation, the output power level of logic "1" dependence on the operating conditions, such as two input signal powers, injection current, and input signal wavelength, are investigated in detail using the broad-band model of this all-optical half adder.

SELECTION OF CITATIONS
SEARCH DETAIL
...