Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
2.
Cell Oncol (Dordr) ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607517

ABSTRACT

PURPOSE: GPX8, which is found in the endoplasmic reticulum lumen, is a member of the Glutathione Peroxidases (GPXs) family. Its role in hepatocellular carcinoma (HCC) is unknown. METHODS: Immunohistochemical staining was used to detect the protein levels of GPX8 in HCC tissue microarrays. A short hairpin RNA lentivirus was used to knock down GPX8, and the main signaling pathways were investigated using transcriptome sequencing and a phosphorylated kinase array. The sphere formation assays, cloning-formation assays and cell migration assays were used to evaluate the stemness and migration ability of HCC cells. Identifying the GPX8-interacting proteins was accomplished through immunoprecipitation and protein mass spectrometry. RESULTS: The GPX8 protein levels were downregulated in HCC patients. Low expression of GPX8 protein was related to early recurrence and poor prognosis in HCC patients. GPX8 knockdown could enhance the stemness and migration ability of HCC cells. Consistently, Based on transcriptome analysis, multiple signaling pathways that include the PI3K-AKT and signaling pathways that regulate the pluripotency of stem cells, were activated after GPX8 knockdown. The downregulation of GPX8 could increase the expression of the tumor stemness markers KLF4, OCT4, and CD133. The in vivo downregulation of GPX8 could also promote the subcutaneous tumor-forming and migration ability of HCC cells. MK-2206, which is a small-molecule inhibitor of AKT, could reverse the tumor-promoting effects both in vivo and in vitro. We discovered that GPX8 and the 71-kDa heat shock cognate protein (Hsc70) have a direct interaction. The phosphorylation of AKT encouraged the translocation of Hsc70 into the nucleus and the expression of the PI3K p110 subunit, thereby increasing the downregulation of GPX8. CONCLUSION: The findings from this study demonstrate the anticancer activity of GPX8 in HCC by inactivating the Hsc70/AKT pathway. The results suggest a possible therapeutic target for HCC.

3.
Exp Cell Res ; 435(2): 113947, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38301989

ABSTRACT

Cancer-associated fibroblasts (CAFs) are the main components in the tumor microenvironment. Tumors activate fibroblasts from quiescent state into activated state by secreting cytokines, and activated CAFs may in turn promote tumor progression and metastasis. Therefore, studies targeting CAFs could enrich the therapeutic options for tumor treatment. In this study, we demonstrate that the content of lipid droplets and the expression of autophagosomes were higher in CAFs than in peri-tumor fibroblasts (PTFs), which was inhibited by 5-(tetradecyloxy)-2-furoic acid(TOFA). The expression of CD36 in CAFs was higher than that in PTFs at both mRNA and protein levels. Inhibition of CD36 activity using either the CD36 inhibitor SSO or siRNA had a significant negative impact on the proliferation and migration abilities of CAFs, which was associated with reduced levels of relevant activated genes (α-SMA, FAP, Vimentin) and cytokines (IL-6, TGF-ß and VEGF-α). SSO also inhibited HCC growth and tumorigenesis in nude mice orthotopically implanted with CAFs and HCC cells. Our data further show that CD36+CAFs affected the expression of PD-1 in CTLs leading to CTL exhaustion, and that patients with high CD36 expression in CAFs were correlated with shorter overall survival (OS). Together, our data demonstrate that CAFs were active in lipid metabolism with increased lipid content and lipophagy activity. CD36 may play a key role in the regulation of the biological behaviors of CAFs, which may influence the proliferation and migration of tumor cells by reprograming the lipid metabolism in tumor cells. Thus, CD36 could be an effective therapeutic target for the treatment of HCC.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/pathology , Cancer-Associated Fibroblasts/pathology , Liver Neoplasms/pathology , Mice, Nude , Metabolic Reprogramming , Cell Line, Tumor , Fibroblasts/metabolism , Cytokines/metabolism , Tumor Microenvironment , Cell Proliferation
4.
Cancer Commun (Lond) ; 44(2): 226-250, 2024 02.
Article in English | MEDLINE | ID: mdl-38143235

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and lethal hepatobiliary tumor with few therapeutic strategies. The metabolic reprogramming of tumor cells plays an essential role in the development of tumors, while the metabolic molecular classification of iCCA is largely unknown. Here, we performed an integrated multiomics analysis and metabolic classification to depict differences in metabolic characteristics of iCCA patients, hoping to provide a novel perspective to understand and treat iCCA. METHODS: We performed integrated multiomics analysis in 116 iCCA samples, including whole-exome sequencing, bulk RNA-sequencing and proteome analysis. Based on the non-negative matrix factorization method and the protein abundance of metabolic genes in human genome-scale metabolic models, the metabolic subtype of iCCA was determined. Survival and prognostic gene analyses were used to compare overall survival (OS) differences between metabolic subtypes. Cell proliferation analysis, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, RNA-sequencing and Western blotting were performed to investigate the molecular mechanisms of diacylglycerol kinase α (DGKA) in iCCA cells. RESULTS: Three metabolic subtypes (S1-S3) with subtype-specific biomarkers of iCCA were identified. These metabolic subtypes presented with distinct prognoses, metabolic features, immune microenvironments, and genetic alterations. The S2 subtype with the worst survival showed the activation of some special metabolic processes, immune-suppressed microenvironment and Kirsten rat sarcoma viral oncogene homolog (KRAS)/AT-rich interactive domain 1A (ARID1A) mutations. Among the S2 subtype-specific upregulated proteins, DGKA was further identified as a potential drug target for iCCA, which promoted cell proliferation by enhancing phosphatidic acid (PA) metabolism and activating mitogen-activated protein kinase (MAPK) signaling. CONCLUSION: Via multiomics analyses, we identified three metabolic subtypes of iCCA, revealing that the S2 subtype exhibited the poorest survival outcomes. We further identified DGKA as a potential target for the S2 subtype.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Diacylglycerol Kinase/genetics , Multiomics , Cholangiocarcinoma/genetics , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/genetics , RNA/therapeutic use , Tumor Microenvironment
5.
Commun Biol ; 6(1): 1181, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37985711

ABSTRACT

Primary liver cancer (PLC) poses a leading threat to human health, and its treatment options are limited. Meanwhile, the investigation of homogeneity and heterogeneity among PLCs remains challenging. Here, using single-cell RNA sequencing, spatial transcriptomic and bulk multi-omics, we elaborated a molecular architecture of 3 PLC types, namely hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular-cholangiocarcinoma (CHC). Taking a high-resolution perspective, our observations revealed that CHC cells exhibit internally discordant phenotypes, whereas ICC and HCC exhibit distinct tumor-specific features. Specifically, ICC was found to be the primary source of cancer-associated fibroblasts, while HCC exhibited disrupted metabolism and greater individual heterogeneity of T cells. We further revealed a diversity of intermediate-state cells residing in the tumor-peritumor junctional zone, including a congregation of CPE+ intermediate-state endothelial cells (ECs), which harbored the molecular characteristics of tumor-associated ECs and normal ECs. This architecture offers insights into molecular characteristics of PLC microenvironment, and hints that the tumor-peritumor junctional zone could serve as a targeted region for precise therapeutical strategies.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Endothelial Cells/metabolism , Bile Duct Neoplasms/genetics , Cholangiocarcinoma/genetics , Bile Ducts, Intrahepatic , Tumor Microenvironment/genetics
6.
J Transl Med ; 21(1): 734, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853415

ABSTRACT

BACKGROUND AND AIMS: The recurrence and metastasis of hepatocellular carcinoma (HCC) are mainly caused by microvascular invasion (MVI). Our study aimed to uncover the cellular atlas of MVI+ HCC and investigate the underlying immune infiltration patterns with radiomics features. METHODS: Three MVI positive HCC and three MVI negative HCC samples were collected for single-cell RNA-seq analysis. 26 MVI positive HCC and 30 MVI negative HCC tissues were underwent bulk RNA-seq analysis. For radiomics analysis, radiomics features score (Radscore) were built using preoperative contrast MRI for MVI prediction and overall survival prediction. We deciphered the metabolism profiles of MVI+ HCC using scMetabolism and scFEA. The correlation of Radscore with the level of APOE+ macrophages and iCAFs was identified. Whole Exome Sequencing (WES) was applied to distinguish intrahepatic metastasis (IM) and multicentric occurrence (MO). Transcriptome profiles were compared between IM and MO. RESULTS: Elevated levels of APOE+ macrophages and iCAFs were detected in MVI+ HCC. There was a strong correlation between the infiltration of APOE+ macrophages and iCAFs, as confirmed by immunofluorescent staining. MVI positive tumors exhibited increased lipid metabolism, which was attributed to the increased presence of APOE+ macrophages. APOE+ macrophages and iCAFs were also found in high levels in IM, as opposed to MO. The difference of infiltration level and Radscore between two nodules in IM was relatively small. Furthermore, we developed Radscore for predicting MVI and HCC prognostication that were also able to predict the level of infiltration of APOE+ macrophages and iCAFs. CONCLUSION: This study demonstrated the interactions of cell subpopulations and distinct metabolism profiles in MVI+ HCC. Besides, MVI prediction Radscore and MVI prognostic Radscore were highly correlated with the infiltration of APOE+ macrophages and iCAFs, which helped to understand the biological significance of radiomics and optimize treatment strategy for MVI+ HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Retrospective Studies , Neoplasm Invasiveness , Apolipoproteins E/genetics
7.
Oncogene ; 42(33): 2507-2520, 2023 08.
Article in English | MEDLINE | ID: mdl-37420030

ABSTRACT

N6-methyladenosine (m6A) RNA methylation and its associated methyltransferase like 3 (METTL3) are involved in the development and maintenance of various tumors. The present study aimed to evaluate the cross-talk of METTL3 with glucose metabolism and reveal a novel mechanism for intrahepatic cholangiocarcinoma (ICC) progression. Real-time quantitative PCR, western blotting, and immunohistochemistry analyses suggested that METTL3 was highly expressed in ICC, which was correlated with poor patient prognosis. Immunoprecipitation sequencing of m6A-RNA showed that METTL3 upregulated m6A modification of NFAT5, which recruited IGF2BP1 for NFAT5 mRNA stabilization. Elevated expression of NFAT5 increased the expression of the gluconeogenesis-related genes GLUT1 and PGK1, resulting in enhanced aerobic glycolysis, proliferation, and tumor metastasis of ICC. Moreover, higher METTL3 expression was observed in tumor tissues of ICC patients with activated ICC glucose metabolism. Importantly, STM2457, a highly potent METTL3 inhibitor, which inhibited METTL3 activity and acted synergistically with gemcitabine, suggests that reprogramming RNA epigenetic modifications may serve as a potential therapeutic strategy. Overall, our findings highlighted the role of METTL3-mediated m6A modification of NFAT5 in activating glycolytic reprogramming in ICC and proposed that the METTL3/NFAT5 axis was a clinical target for the management of ICC chemoresistance by targeting cancer glycolysis.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , RNA , Glucose
8.
Sci Adv ; 9(17): eadg0654, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37115931

ABSTRACT

Immune-responsive gene 1 (IRG1) encodes aconitate decarboxylase (ACOD1) that catalyzes the production of itaconic acids (ITAs). The anti-inflammatory function of IRG1/ITA has been established in multiple pathogen models, but very little is known in cancer. Here, we show that IRG1 is expressed in tumor-associated macrophages (TAMs) in both human and mouse tumors. Mechanistically, tumor cells induce Irg1 expression in macrophages by activating NF-κB pathway, and ITA produced by ACOD1 inhibits TET DNA dioxygenases to dampen the expression of inflammatory genes and the infiltration of CD8+ T cells into tumor sites. Deletion of Irg1 in mice suppresses the growth of multiple tumor types and enhances the efficacy of anti-PD-(L)1 immunotherapy. Our study provides a proof of concept that ACOD1 is a potential target for immune-oncology drugs and IRG1-deficient macrophages represent a potent cell therapy strategy for cancer treatment even in pancreatic tumors that are resistant to T cell-based immunotherapy.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Humans , Animals , Mice , Tumor-Associated Macrophages/metabolism , CD8-Positive T-Lymphocytes/metabolism , Macrophages/metabolism , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Hydro-Lyases/genetics
9.
Hepatol Int ; 17(4): 927-941, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37031334

ABSTRACT

BACKGROUND AND PURPOSE: Tumor recurrence after liver transplantation (LT) impedes the curative chance for hepatocellular carcinoma (HCC) patients. This study aimed to develop a deep pathomics score (DPS) for predicting tumor recurrence after liver transplantation using deep learning. PATIENTS AND METHODS: Two datasets of 380 HCC patients who underwent LT were enrolled. Residual convolutional neural networks were used to identify six histological structures of HCC. The individual risk score of each structure and DPS were derived by a modified DeepSurv network. Cox regression analysis and Concordance index were used to evaluate the prognostic significance. The cellular exploration of prognostic immune biomarkers was performed by quantitative and spatial proximity analysis according to three panels of 7-color immunofluorescence. RESULTS: The overall classification accuracy of HCC tissue was 97%. At the structural level, immune cells were the most significant tissue category for predicting post-LT recurrence (HR 1.907, 95% CI 1.490-2.440). The C-indices of DPS achieved 0.827 and 0.794 in the training and validation cohorts, respectively. Multivariate analysis for recurrence-free survival (RFS) showed that DPS (HR 4.795, 95% CI 3.017-7.619) was an independent risk factor. Patients in the high-risk subgroup had a shorter RFS, larger tumor diameter and a lower proportion of clear tumor borders. At the cellular level, a higher infiltration of intratumoral NK cells was negatively correlated with recurrence risk. CONCLUSIONS: This study established an effective DPS. Immune cells were the most significant histological structure related to HCC recurrence. DPS performed well in post-LT recurrence prediction and the identification of clinicopathological features.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver Transplantation , Humans , Liver Transplantation/adverse effects , Neoplasm Recurrence, Local , Retrospective Studies , Prognosis , Risk Factors
10.
Cell Discov ; 9(1): 25, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36878933

ABSTRACT

Hepatocellular carcinoma (HCC) is an immunotherapy-resistant malignancy characterized by high cellular heterogeneity. The diversity of cell types and the interplay between tumor and non-tumor cells remain to be clarified. Single cell RNA sequencing of human and mouse HCC tumors revealed heterogeneity of cancer-associated fibroblast (CAF). Cross-species analysis determined the prominent CD36+ CAFs exhibited high-level lipid metabolism and expression of macrophage migration inhibitory factor (MIF). Lineage-tracing assays showed CD36+CAFs were derived from hepatic stellate cells. Furthermore, CD36 mediated oxidized LDL uptake-dependent MIF expression via lipid peroxidation/p38/CEBPs axis in CD36+ CAFs, which recruited CD33+myeloid-derived suppressor cells (MDSCs) in MIF- and CD74-dependent manner. Co-implantation of CD36+ CAFs with HCC cells promotes HCC progression in vivo. Finally, CD36 inhibitor synergizes with anti-PD-1 immunotherapy by restoring antitumor T-cell responses in HCC. Our work underscores the importance of elucidating the function of specific CAF subset in understanding the interplay between the tumor microenvironment and immune system.

11.
ACS Appl Mater Interfaces ; 15(3): 3781-3790, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36631295

ABSTRACT

The activation of nanoparticles (NPs) in the tumor microenvironment exerts synergistic therapeutic effects with chemotherapy against multiple cancers. In this study, an NP system prepared using biocompatible MIL-100 NPs was studied as an effective vehicle to deliver oxaliplatin for hepatocellular carcinoma treatment. The NPs were coated with polydopamine (PDA) and NH2-PEGTK-COOH and then loaded with oxaliplatin to create the multi-functional NP Oxa@MIL-PDA-PEGTK. Oxa@MIL-PDA-PEGTK is activated in the tumor microenvironment, causing the generation of cytotoxic reactive oxygen species (ROS) via the Fenton reaction and the release of the loaded oxaliplatin. In addition, under near-infrared (NIR) irradiation, Oxa@MIL-PDA-PEGTK can generate hyperthermia at tumor sites. Moreover, owing to the light-induced activation of the Oxa@MIL-PDA-PEGTK NPs, higher drug delivery efficiency, more precise targeted activation, and reduced off-target toxicity were observed in in vitro and in vivo experiments. Taken together, owing to its improved drug delivery efficiency and multi-functional activities, including the ability for targeted chemotherapy coupled with photothermal and chemodynamic therapy, Oxa@MIL-PDA-PEGTK may serve as a new approach for treating hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Hyperthermia, Induced , Liver Neoplasms , Metal-Organic Frameworks , Nanoparticles , Humans , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Doxorubicin/pharmacology , Lasers , Liver Neoplasms/therapy , Metal-Organic Frameworks/pharmacology , Oxaliplatin/pharmacology , Phototherapy , Photothermal Therapy , Tumor Microenvironment
12.
Hepatology ; 77(1): 109-123, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35043976

ABSTRACT

BACKGROUND AND AIMS: Monocarboxylate transporter (MCT) 4 is a high-affinity lactate transporter that is primarily involved in the maintenance of intracellular pH homeostasis and highly expressed in different tumors. However, the role of MCT4 in modulating immune responses against HCC remains unknown. APPROACH AND RESULTS: In this study, we demonstrated that MCT4 was overexpressed in HCC, which was associated with poor prognosis in patients. Genetic or pharmacological inhibition of MCT4 using VB124 (a highly potent MCT4 inhibitor) suppressed HCC tumor growth in immunocompetent mice model by enhancing CD8 + T cell infiltration and cytotoxicity. Such improved immunotherapy response by MCT4 targeting was due to combined consequences characterized by the alleviated acidification of tumor microenvironment and elevated the chemokine (C-X-C motif) ligand (CXCL) 9/CXCL10 secretion induced by reactive oxygen species/NF-κB signaling pathway. Combining MCT4 inhibition improved the therapeutic benefit of anti-programmed cell death 1 immunotherapy in HCC and prolonged mice survival. Moreover, higher MCT4 expression was observed in tumor tissues from nonresponder patients with HCC receiving neoadjuvant therapy with toripalimab. CONCLUSIONS: Our results revealed that lactate exportation by MCT4 has a tumor-intrinsic function in generating an immunosuppressive HCC environment and demonstrated the proof of the concept of targeting MCT4 in tailoring HCC immunotherapeutic approaches.


Subject(s)
Carcinoma, Hepatocellular , Immunotherapy , Liver Neoplasms , Monocarboxylic Acid Transporters , Animals , Mice , Carcinoma, Hepatocellular/therapy , Lactic Acid/metabolism , Liver Neoplasms/therapy , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Tumor Microenvironment , Humans
13.
BJS Open ; 6(5)2022 09 02.
Article in English | MEDLINE | ID: mdl-36125345

ABSTRACT

BACKGROUND: Combination conversion therapies afforded curative surgery chance for initially unresectable hepatocellular carcinoma (uHCC). This study aimed to evaluate the conversion rate and clinical outcomes of a first-line conversion regimen of lenvatinib combined with transarterial chemoembolization (TACE) plus immunotherapy for initial uHCC by interpreting real-world data. METHODS: Conversion therapy data of patients with uHCC from November 2018 to January 2021 were analysed. The regimens included triple combination therapy (t-CT: lenvatinib, TACE, plus toripalimab) and dual combination therapy (d-CT: lenvatinib plus TACE). Another study population diagnosed with hepatocellular carcinoma of macrovascular invasion disease were included as the upfront surgery cohort. Treatment responses and conversion rate were primary outcomes. Survival and adverse events were analysed. RESULTS: Fifty-one patients receiving t-CT (n = 30) and d-CT (n = 21) were enrolled. Higher overall response rates (76.7 per cent versus 47.6 per cent, P = 0.042) and disease control rates (90.0 per cent versus 57.1 per cent, P = 0.042) were observed via t-CT than d-CT. Both median overall survival and event-free survival were not reached in the t-CT cohort. A higher rate of curative conversion resection was achieved through t-CT than d-CT (50.0 per cent versus 19.0 per cent, P = 0.039). The disease-free survival of patients undergoing conversion resection in the t-CT cohort (n = 15) was higher than that in the upfront surgery cohort (n = 68, P = 0.039). Both t-CT and d-CT regimens were tolerable. CONCLUSIONS: Better treatment responses and conversion rate for patients with uHCC were obtained with first-line t-CT. Neoadjuvant t-CT before surgery should be recommended for patients with macrovascular invasion.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Antibodies, Monoclonal, Humanized , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic/adverse effects , Humans , Liver Neoplasms/pathology , Phenylurea Compounds , Quinolines , Treatment Outcome
14.
Int J Clin Pract ; 2022: 7025811, 2022.
Article in English | MEDLINE | ID: mdl-35936062

ABSTRACT

Objective: The present study aims to (1) analyze the clinical characteristics and related influencing factors of knee bone infarction in systemic lupus erythematosus (SLE) and (2) improve the understanding of SLE complicated with knee bone infarction. Methods: The data of patients with SLE complicated with knee bone infarction were retrospectively analysed; patients with SLE during the same period who matched in age, gender, and disease duration were selected as control subjects, with a 1 : 1 ratio with the SLE group. The clinical data were collected to analyze the risk factors for SLE complicated with knee bone infarction. Results: In a total of 36 (6.4%) of 563 patients aged 19-33 (25.8 ± 4.8) years who had SLE during the same period, the disease was complicated with knee bone infarction. The diagnosis of knee bone infarction was made at an SLE duration of 7-65 (26.2 ± 15.7) months. During the SLE course, knee bone infarction occurred within 1 year in 6 cases (16.7%), within 1-5 years in 28 cases (77.8%), and in >5 years in 2 cases (5.6%). Raynaud's phenomenon incidence and anti-nRNP antibody positivity were significantly higher in the knee bone infarction group than in the control group (P < 0.01 and P < 0.05, respectively). The cumulative glucocorticoid dose at 1, 3, and 6 months was significantly higher in the knee bone infarction group than in the control group (P < 0.05). SLE complicated with knee necrosis had a statistically significant rank correlation with Raynaud's phenomenon (r = 0.445, P < 0.001), anti-nRNP antibody (r = 0.309, P=0.008), and renal injury (r = 0.252, P=0.032). The multivariate analysis of SLE complicated with knee bone infarction showed that Raynaud's phenomenon was an independent influencing factor for the complicated knee bone infarction in SLE patients (OR = 4.938, P=0.004), and the probability of SLE complicated with knee bone infarction in Raynaud's phenomenon positive patients was 4.938 times that of Raynaud's phenomenon negative patients. Conclusions: The risk of knee bone infarction was relatively high in patients with SLE within a 5-year disease course and in young patients. The risk factors were Raynaud's phenomenon, anti-nRNP antibody positivity, and early high-dose glucocorticoid therapy.


Subject(s)
Lupus Erythematosus, Systemic , Raynaud Disease , Glucocorticoids/therapeutic use , Humans , Infarction/complications , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/drug therapy , Raynaud Disease/complications , Raynaud Disease/epidemiology , Retrospective Studies
15.
Acta Biochim Biophys Sin (Shanghai) ; 54(11): 1694-1707, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35929594

ABSTRACT

The complement cascade plays a "complementing" role in human immunity. However, the potential roles of complement system in impacting molecular and clinical features of hepatocellular carcinoma (HCC) remain unclear. In this study, eleven public datasets are analyzed to compare the complement status between normal and cancerous samples based on 18 classical complement-associated genes. The complement scores are constructed to quantify complement signatures of individual tumors. HCC patients in the The Cancer Genome Atlas (TCGA) cohort are focused to perform systematical analyses between complement status and immune infiltration, miRNA expression, DNA methylation, clinicopathological features, and drug response. The results show that the complement scores in normal tissues are dramatically higher than those of tumor tissues. Tumor samples in the TCGA cohort are classified into complement score-low and score-high groups. Pathway analysis reveals that tumor-promoting pathways are typically inhibited in complement score-high group. This study also shows that tumor-killing immune cells, such as CD8 + T cells and natural killer cells are abundant and tumor-suppressing miRNAs are upregulated in complement score-high samples. In addition, we identify that complement scores are negatively correlated with certain clinical features, including pathological grade, clinical-stage, and portal vein invasion. Moreover, various molecular features together with complement scores are found to be correlated with response to anti-cancer drugs. This study provides a comprehensive and multidimensional analysis conducive to understanding the role of complement in cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , CD8-Positive T-Lymphocytes , DNA Methylation , Biomarkers, Tumor
16.
Front Oncol ; 12: 882372, 2022.
Article in English | MEDLINE | ID: mdl-35692750

ABSTRACT

Recently, the role of lncRNAs in tumorigenesis and development has received increasing attention, but the mechanism underlying lncRNAs-mediated tumor growth in the hypoxic microenvironment of solid tumors remains obscure. Using RNA sequencing, 25 hypoxia-related lncRNAs were found to be upregulated in HCC, of which lncRNA USP2-AS1 were significantly increased under hypoxia. We further confirmed that USP2-AS1 was significantly upregulated in liver cancer using FISH assay and that USP2-AS1 was associated with advanced liver cancer and increased tumor size. Furthermore, overexpression of USP2-AS1 under hypoxia dramatically increased HCC proliferation and clone formation, whereas the opposite results were observed after USP2-AS1 knockdown. We also found that overexpression of USP2-AS1 increased migration and invasion of HCC cells, while USP2-AS1 knockdown led to the opposite effect. In addition, USP2-AS1 knockdown can increase the efficacy of lenvatinib in our mice tumor xenograft model. Our findings also suggest that USP2-AS1 could increase the protein level of HIF1α by enhancing YBX1 protein binding to HIF1α mRNA under hypoxia and the therapeutic effect of lenvatinib can be enhanced by combination with HIF1α inhibitors in liver cancer.

17.
Acta Biochim Biophys Sin (Shanghai) ; 54(7): 1008-1020, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35713314

ABSTRACT

Expression of transmembrane protein 106A (TMEM106A) has been reported to be dysregulated in several types of cancers. However, the role of TMEM106A in hepatocellular carcinoma (HCC) is still unknown. In the present study, we demonstrate that TMEM106A is markedly downregulated in HCC compared with normal liver tissue. In particular, tumor-specific DNA methylation of TMEM106A is frequently observed in tumor tissues from HCC patients. Immunohistochemistry and pyrosequencing reveal a significant relationship between TMEM106A methylation and downregulation of protein expression. Receiver operating characteristic (ROC) curve analysis reveals that methylation of TMEM106A in tumor samples is different from that in non-malignant adjacent tissues of HCC patients. Moreover, HCC patients with TMEM106A hypermethylation have a poor clinical prognosis. 5-Aza-2'-deoxycytidin treatment of hypermethylated TMEM106A in highly metastatic HCC cells increases the expression of TMEM106A. Functional assays reveal that overexpression of TMEM106A significantly suppresses the malignant behavior of HCC cells in vitro and decreases tumorigenicity and lung metastasis in vivo. Mechanistically, TMEM106A inhibits epithelial mesenchymal transition (EMT) of HCC cells through inactivation of the Erk1/2/Slug signaling pathway. In conclusion, our findings demonstrate that TMEM106A is an inhibitor of HCC EMT and metastasis, and TMEM106A is often transcriptionally downregulated by promoter methylation, which results in reduced levels of TMEM106A protein and predicts poor survival outcomes for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , DNA Methylation , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Neoplasm Invasiveness/genetics , Neoplasm Metastasis
18.
Cancer Lett ; 541: 215750, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35609735

ABSTRACT

Immune checkpoint blockade (ICB) therapy is an important treatment option for individuals with cancer, but it has certain limitations. Identifying a better target that can overcome tumor immune escape and stimulate T cell activity is critical. This research aimed to delve into the molecular mechanism underlying the immunoregulatory function of metadherin (MTDH), which is a novel and potential therapeutic target in hepatocellular cancer (HCC). A small interfering RNA library was screened using the luciferase reporter assay and PD-L1 promoter. The Cancer Genome Atlas database and HCC tissues were used to investigate the relationship between MTDH and PD-L1. The association between MTDH and ß-catenin/lymphoid enhancer binding factor (LEF-1) was discovered by co-immunoprecipitation. The chromatin immunoprecipitation assay was used to investigate the interaction of MTDH with the PD-L1 promoter when LEF-1 expression was silenced. Locked nucleic acid antisense oligonucleotides (ASOs) were used to inhibit MTDH. We utilized in vitro co-cultures and in vivo syngeneic tumor development experiments to confirm the effectiveness of MTDH ASO combined with PD-1 monoclonal antibody (mAb). MTDH was demonstrated to be a PD-L1 modulator. MTDH increased PD-L1 expression and upregulated PD-L1 transcriptional activity through ß-catenin/LEF-1 signaling. More importantly, MTDH ASO improved the anti-PD-1 response and increased cytotoxic T-cell infiltration in PD-1 mAb-treated malignancies. MTDH effectively predicts the therapeutic efficacy of ICB therapy. Our results imply that combining MTDH ASO with PD-1 mAb could be a promising therapeutic strategy for HCC. In addition, MTDH is a potential novel biomarker for predicting the effectiveness of immune checkpoint inhibitor treatment.


Subject(s)
Antibodies, Monoclonal , B7-H1 Antigen , Carcinoma, Hepatocellular , Immune Checkpoint Inhibitors , Liver Neoplasms , Membrane Proteins , Oligonucleotides, Antisense , RNA-Binding Proteins , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor , Humans , Immune Checkpoint Inhibitors/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Oligonucleotides, Antisense/immunology , Programmed Cell Death 1 Receptor/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Tumor Microenvironment , beta Catenin/genetics , beta Catenin/immunology
19.
Front Immunol ; 13: 861328, 2022.
Article in English | MEDLINE | ID: mdl-35479084

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is characterized by metabolic dysregulation and distinct immunological signatures. The interplay between metabolic and immune processes in the tumor microenvironment (TME) causes the complexity and heterogeneity of immunotherapy responses observed during ccRCC treatment. Herein, we initially identified two distinct metabolic subtypes (C1 and C2 subtypes) and immune subtypes (I1 and I2 subtypes) based on the occurrence of differentially expressed metabolism-related prognostic genes and immune-related components. Notably, we observed that immune regulators with upregulated expression actively participated in multiple metabolic pathways. Therefore, we further delineated four immunometabolism-based ccRCC subtypes (M1, M2, M3, and M4 subtypes) according to the results of the above classification. Generally, we found that high metabolic activity could suppress immune infiltration. Immunometabolism subtype classification was associated with immunotherapy response, with patients possessing the immune-inflamed, metabolic-desert subtype (M3 subtype) that benefits the most from immunotherapy. Moreover, differences in the shifts in the immunometabolism subtype after immunotherapy were observed in the responder and non-responder groups, with patients from the responder group transferring to subtypes with immune-inflamed characteristics and less active metabolic activity (M3 or M4 subtype). Immunometabolism subtypes could also serve as biomarkers for predicting immunotherapy response. To decipher the genomic and epigenomic features of the four subtypes, we analyzed multiomics data, including miRNA expression, DNA methylation status, copy number variations occurrence, and somatic mutation profiles. Patients with the M2 subtype possessed the highest VHL gene mutation rates and were more likely to be sensitive to sunitinib therapy. Moreover, we developed non-invasive radiomic models to reveal the status of immune activity and metabolism. In addition, we constructed a radiomic prognostic score (PRS) for predicting ccRCC survival based on the seven radiomic features. PRS was further demonstrated to be closely linked to immunometabolism subtype classification, immune score, and tumor mutation burden. The prognostic value of the PRS and the association of the PRS with immune activity and metabolism were validated in our cohort. Overall, our study established four immunometabolism subtypes, thereby revealing the crosstalk between immune and metabolic activities and providing new insights into personal therapy selection.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/therapy , DNA Copy Number Variations , Female , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/therapy , Male , Prognosis , Tumor Microenvironment
20.
J Oncol ; 2022: 8024979, 2022.
Article in English | MEDLINE | ID: mdl-35378771

ABSTRACT

Osteosarcoma is the most common primary malignancy in the musculoskeletal system. It is reported that copy number variation- (CNV-) derived lncRNAs contribute to the progression of osteosarcoma. However, whether CNV-derived lncRNAs affect the prognosis of osteosarcoma remains unclear. Here, we obtained osteosarcoma-related CNV data and gene expression profiles from The Cancer Genome Atlas (TCGA) database. CNV landscape analysis indicated that copy number amplification of lncRNAs was more frequent than deletion in osteosarcoma samples. Thirty-four CNV-lncRNAs with DNA-CNV frequencies greater than 30% and their corresponding 294 mRNAs were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses revealed that these mRNAs were mainly enriched in olfaction, olfactory receptor activity, and olfactory transduction processes. Furthermore, we predicted that a total of 23 genes were cis-regulated by 16 CNV-lncRNAs, while 30 transcription factors (TFs) were trans-regulated by 5 CNV-lncRNAs. Through t-tests, univariate Cox regression analysis, and the least absolute shrinkage and selection operator (LASSO), we constructed a CNV-related risk model including 3 lncRNAs (AC129492.1, PSMB1, and AC037459.4). The Kaplan-Meier (K-M) curves indicated that patients with high-risk scores showed poor prognoses. The areas under the receiver operating characteristic (ROC) curves (AUC) for predicting 3-, 5-, and 7-year overall survival (OS) were greater than 0.7, showing a satisfactory predictive efficiency. Gene set enrichment analysis (GSEA) revealed that the prognostic signature was intimately linked to skeletal system development, immune regulation, and inflammatory response. Collectively, our study developed a novel 3-CNV-lncRNA prognostic signature that would provide theoretical guidance for the clinical prognostic management of osteosarcoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...