Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 130: 155743, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38824822

ABSTRACT

BACKGROUND: Insulin resistance (IR) is the central pathophysiological feature in the pathogenesis of metabolic syndrome, obesity, type 2 diabetes mellitus (T2DM), hypertension, and dyslipidemia. As the main active ingredient in Lithocarpus litseifolius [Hance] Chun, previous studies have shown that phlorizin (PHZ) can reduce insulin resistance in the liver. However, the effect of phlorizin on attenuating hepatic insulin resistance has not been fully investigated, and whether this effect is related to AMPK remains unclear. PURPOSE: The present study aimed to further investigate the effect of phlorizin on attenuating insulin resistance and the potential action mechanism. METHODS: Free fatty acids (FFA) were used to induce insulin resistance in HepG2 cells. The effects of phlorizin and FFA on cell viability were detected by MTT analysis. Glucose consumption, glycogen synthesis, intracellular malondialdehyde (MDA), superoxide dismutase (SOD), total cholesterol (TC), and triglyceride (TG) contents were quantified after phlorizin treatment. Glucose uptake and reactive oxygen species (ROS) levels in HepG2 cells were assayed by flow cytometry. Potential targets and signaling pathways for attenuating insulin resistance by phlorizin were predicted by network pharmacological analysis. Moreover, the expression levels of proteins related to the AMPK/PI3K/AKT signaling pathway were detected by western blot. RESULTS: Insulin resistance was successfully induced in HepG2 cells by co-treatment of 1 mM sodium oleate (OA) and 0.5 mM sodium palmitate (PA) for 24 h. Treatment with phlorizin promoted glucose consumption, glucose uptake, and glycogen synthesis and inhibited gluconeogenesis in IR-HepG2 cells. In addition, phlorizin inhibited oxidative stress and lipid accumulation in IR-HepG2 cells. Network pharmacological analysis showed that AKT1 was the active target of phlorizin, and the PI3K/AKT signaling pathway may be the potential action mechanism of phlorizin. Furthermore, western blot results showed that phlorizin ameliorated FFA-induced insulin resistance by activating the AMPK/PI3K/AKT signaling pathway. CONCLUSION: Phlorizin inhibited oxidative stress and lipid accumulation in IR-HepG2 cells and ameliorated hepatic insulin resistance by activating the AMPK/PI3K/AKT signaling pathway. Our study proved that phlorizin played a role in alleviating hepatic insulin resistance by activating AMPK, which provided experimental evidence for the use of phlorizin as a potential drug to improve insulin resistance.


Subject(s)
AMP-Activated Protein Kinases , Fatty Acids, Nonesterified , Insulin Resistance , Phlorhizin , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Phlorhizin/pharmacology , Hep G2 Cells , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glucose/metabolism , Reactive Oxygen Species/metabolism , Cell Survival/drug effects
2.
Phytomedicine ; 119: 154960, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37531905

ABSTRACT

BACKGROUND: Rosa roxburghii Tratt (RRT) is a famous healthy and medicinal edible fruit in southwest China and has been shown to have some hepatoprotective properties. However, whether the active components, such as the triterpene acids from Rosa roxburghii Tratt fruits (TAR), have anti-hepatocellular carcinoma (HCC) effects and the potential molecular mechanisms are still unclear. PURPOSE: This study aimed to investigate the anti-HCC effects and potential action mechanisms of triterpene components in RRT fruits. METHODS: The triterpene acids in TAR were analyzed by using UPLC-Q-Exactive Orbitrap/MS, and the main components were virtual screening for targets based on pharmacophore and then performed enrichment analysis. HepG2 cells were used for in vitro experiments, including MTT assay, wound healing assay, and flow cytometry to detect cell cycle, reactive oxygen species (ROS) level, caspase-3 activity, and mitochondrial membrane potential (MMP) changes. Moreover, the western blot was used to detect mitochondrial apoptosis and ROS/ c-Jun N-terminal kinase (JNK) signaling pathway-related proteins. RESULTS: The main components in TAR are pentacyclic triterpene acids (mainly euscaphic acid and roxburic acid). TAR could inhibit cell viability, cell migration ability and suppress the proliferation of HepG2 cells through G2/M cell cycle arrest. On the other hand, TAR could induce HepG2 cells apoptosis, which was achieved by causing the accumulation of ROS and activation of the JNK signaling pathway, and our research showed that this apoptosis was mediated through the mitochondrial pathway. In addition, the free radical scavenger N-acetyl cysteine (NAC) could attenuate TAR-induced ROS accumulation and JNK signaling pathway activation, which ultimately reversed mitochondrial apoptosis. CONCLUSION: TAR could activate the ROS/JNK signaling pathway, which could inhibit the proliferation through G2/M cell cycle arrest and promote apoptosis through the mitochondrial pathway in HCC cells. This supports the anti-tumor potential in RRT fruits.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Rosa , Triterpenes , Humans , Reactive Oxygen Species/metabolism , MAP Kinase Signaling System , Fruit , Carcinoma, Hepatocellular/pathology , Cell Cycle Checkpoints , Apoptosis , Hep G2 Cells , Triterpenes/pharmacology , Liver Neoplasms/pathology , Cell Line, Tumor
3.
Phytomedicine ; 98: 153919, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35104757

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis and hepatocyte injury, is an obesity-induced metabolic dysregulation with few available therapeutic options. Enhancement of the mitochondrial function was considered as an effective treatment for NALFD. Unsaturated fatty acids (UFAs) have been shown to have beneficial effects on metabolic syndrome disease such as hyperlipidemia, coronary artery disease and cardiovascular diseases. The seed oil of Rosa roxburghii Tratt (ORRT) was of high quality in terms of its high amount of unsaturated fatty acids. However, the effects of ORRT on NALFD have not been reported so far. PURPOSE: The study aimed to evaluate the protective effects and molecular mechanism of ORRT for the treatment of NAFLD in vivo and in vitro. METHODS: The beneficial effects, especially improving the mitochondrial function, and the potential mechanism of ORRT on NAFLD were studied both in vivo and in vitro. Lipid levels were determined by triglyceride (TG), total cholesterol (TC), and Oil Red O staining. Oxidative stress and inflammation were assessed by detecting antioxidant enzyme activity, MDA content, and ELISA assay. Blood TG, TC, HDL-c and LDL-c levels were measured in HFD mice. Western blot analyses were used to determine the levels of the protein involved in fatty acid oxidation, oxidative metabolism, and mitochondria biogenesis and function. The mitochondrial membrane potential level was measured by JC-1 staining to teste the effect of ORRT on mitochondrial function in vitro. GW6471 (inhibitor of PPARα) was used to confirm the relationship between PPARα and PGC-1α. RESULTS: ORRT significantly restrained NAFLD progression by attenuating lipid accumulation, oxidative stress and inflammatory response. Furthermore, ORRT upregulated thermogenesis-related gene expressions, such as uncoupling protein 1 (UCP1) and p38 mitogen-activated protein kinase (p38 MAPK). The results showed that the expression of key genes involved in fatty acid oxidation (e.g., CPT-1α, ACADL, PPARα) and in mitochondrial biogenesis and function (e.g., TFAM, NRF1, PGC-1α, and COX IV) was significantly increased. Together with the observed MMP improvement, these findings suggested that ORRT activated the mitochondrial oxidative pathway. Additionally, GW6471 inhibited the ORRT on promoting the expression of PGC-1α, CPT-1α, and ACADL. In conclusion, ORRT possessed the potential to prevent lipid accumulation via the PPARα/PGC-1α signaling pathway, which could be developed as a natural health-promoting oil against NAFLD.

4.
World J Clin Cases ; 9(16): 4046-4051, 2021 Jun 06.
Article in English | MEDLINE | ID: mdl-34141765

ABSTRACT

BACKGROUND: Previous studies reported that most of the intracranial dermoid cyst ruptures were spontaneous, and only a few were traumatic, with asymptomatic much rarer than the symptomatic ruptures. Hence, how to deal with the asymptomatic traumatic rupture of intracranial dermoid cyst remains a challenge in the clinic. CASE SUMMARY: A 59-year-old man was accidentally diagnosed with intracranial dermoid cyst through a cranial computed tomography (CT) scan due to a car accident. A mixed-density lesion with fat and a calcified margin was observed in the midline of the posterior fossa, accompanied with lipid droplet drifts in brain sulci, fissures, cisterns, and ventricles. After 1 wk of conservative observation, no change was observed on the updated cranial CT scan. After 2 wk of conservative observation, magnetic resonance imaging examination confirmed that the lesion was a traumatic rupture of a posterior fossa dermoid cyst with lipid droplet drifts. As the patient exhibited no adverse symptoms throughout the 2 wk, a 6-mo follow-up visit was arranged for him instead of aggressive treatment. Nonetheless, the patient did not show any abnormal neurological symptoms in the 6 mo of follow-up visits. CONCLUSION: Asymptomatic traumatic rupture of intracranial dermoid cyst could be just followed or treated conservatively rather than treated aggressively.

SELECTION OF CITATIONS
SEARCH DETAIL
...