Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(10): 104001, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38518322

ABSTRACT

Phototaxis phenomenon is fundamental and critical for optical manipulation of micro-objects. Here, we report the size-dependent negative or positive phototaxis behaviors for microdroplets containing interfacial energy absorber flying in a laser. The critical diameters for such negative-to-positive turnover are studied through both experiments and simulation with different liquids and absorbers, which establishes the mechanism and reveals the role of both the liquid and the absorber inside the microdroplets. This study offers new insight for the manipulation of the phototaxis behavior of micro-objects, showing potential applications in optical trapping and transporting systems that involve light-microdroplet interactions.

2.
Adv Sci (Weinh) ; 11(12): e2307020, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38239054

ABSTRACT

Control of convection plays an important role in heat transfer regulation, bio/chemical sensing, phase separation, etc. Current convection controlling systems generally depend on engineered energy sources to drive and manipulate the convection, which brings additional energy consumption into the system. Here the use of human hand as a natural and sustainable infrared (IR) radiation source for the manipulation of liquid convection is demonstrated. The fluid can sense the change of the relative position or the shape of the hand with the formation of different convection patterns. Besides the generation of static complex patterns, dynamic manipulation of convections can also be realized via moving of hand or finger. The use of such sustainable convections to control the movement of a floating "boat" is further achieved. The use of human hands as the natural energy sources provides a promising approach for the manipulation of liquid convection without the need of extra external energy, which may be further utilized for low-cost and intelligent bio/chemical sensing and separation.


Subject(s)
Convection , Hot Temperature , Humans , Infrared Rays
3.
Cell Death Discov ; 10(1): 22, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212304

ABSTRACT

Dysfunctional paracrine signaling through Pannexin 1 (PANX1) channels is linked to several adult neurological pathologies and emerging evidence suggests that PANX1 plays an important role in human brain development. It remains unclear how early PANX1 influences brain development, or how loss of PANX1 alters the developing human brain. Using a cerebral organoid model of early human brain development, we find that PANX1 is expressed at all stages of organoid development from neural induction through to neuroepithelial expansion and maturation. Interestingly, PANX1 cellular distribution and subcellular localization changes dramatically throughout cerebral organoid development. During neural induction, PANX1 becomes concentrated at the apical membrane domain of neural rosettes where it co-localizes with several apical membrane adhesion molecules. During neuroepithelial expansion, PANX1-/- organoids are significantly smaller than control and exhibit significant gene expression changes related to cell adhesion, WNT signaling and non-coding RNAs. As cerebral organoids mature, PANX1 expression is significantly upregulated and is primarily localized to neuronal populations outside of the ventricular-like zones. Ultimately, PANX1 protein can be detected in all layers of a 21-22 post conception week human fetal cerebral cortex. Together, these results show that PANX1 is dynamically expressed by numerous cell types throughout embryonic and early fetal stages of human corticogenesis and loss of PANX1 compromises neuroepithelial expansion due to dysregulation of cell-cell and cell-matrix adhesion, perturbed intracellular signaling, and changes to gene regulation.

4.
Polymers (Basel) ; 14(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35808609

ABSTRACT

An experimental investigation on the resistance welding of carbon-fiber-reinforced polyetheretherketone (PEEK) composite laminate using three types of stainless steel (SS) meshes with different sizes and electrical resistances as heating elements is reported. The objective of this study is to determine the influence of the metal mesh on the welding process and performance at different power densities ranging from 29 to 82 kW/m2. Resistance welding equipment is used to monitor the temperature and displacement along the thickness of the laminate. The results show that the power density determines the welding time and heat concentration. A large power density results in a short welding time, but also increases the temperature gradient at the joining interface (almost 50 °C) and causes an obvious deformation of a contraction of more than 0.1 mm along the thickness of the laminate. A SS mesh with low resistance has a strong welding capability, i.e., a high welding efficiency under low power density. A lap shear strength of approximately 35 MPa can be obtained with the appropriate power density. The shear strength is affected by the bonding between the metal mesh and polymer, the metal mesh load bearing, and the metal mesh size.

5.
Nat Commun ; 13(1): 1446, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304477

ABSTRACT

Noncontact human-machine interaction provides a hygienic and intelligent approach for the communication between human and robots. Current noncontact human-machine interactions are generally limited by the interaction distance or conditions, such as in the dark. Here we explore the utilization of hand as an infrared light source for noncontact human-machine interaction. Metallic gratings are used as the human-machine interface to respond to infrared radiation from hand and the generated signals are visualized as different infrared structural colors. We demonstrate the applications of the infrared structural color-based human-machine interaction for user-interactive touchless display and real-time control of a robot vehicle. The interaction is flexible to the hand-interface distance ranging from a few centimeters to tens of centimeters and can be used in low lighting condition or in the dark. The findings in this work provide an alternative and complementary approach to traditional noncontact human-machine interactions, which may further broaden the potential applications of human-machine interaction.


Subject(s)
Communication , Hand , Humans
6.
J Am Chem Soc ; 144(15): 6779-6790, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35293736

ABSTRACT

This report presents nanoparticles composed of a liquid gallium core with a reduced graphene oxide (RGO) shell (Ga@RGO) of tunable thickness. The particles are produced by a simple, one-pot nanoprobe sonication method. The high near-infrared absorption of RGO results in a photothermal energy conversion of light to heat of 42.4%. This efficient photothermal conversion, combined with the large intrinsic thermal expansion coefficient of liquid gallium, allows the particles to be used for photoacoustic imaging, that is, conversion of light into vibrations that are useful for imaging. The Ga@RGO results in fivefold and twofold enhancement in photoacoustic signals compared with bare gallium nanoparticles and gold nanorods (a commonly used photoacoustic contrast agent), respectively. A theoretical model further reveals the intrinsic factors that affect the photothermal and photoacoustic performance of Ga@RGO. These core-shell Ga@RGO nanoparticles not only can serve as photoacoustic imaging contrast agents but also pave a new way to rationally design liquid metal-based nanomaterials with specific multi-functionality for biomedical applications.


Subject(s)
Gallium , Graphite , Nanoparticles , Photoacoustic Techniques , Contrast Media , Gold , Photoacoustic Techniques/methods , Phototherapy/methods
7.
Nanoscale ; 11(44): 21249-21258, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31663562

ABSTRACT

Highly-oriented, interconnected graphene frameworks have been considered as promising candidates to realize high-performance thermal management in microelectronics. However, the obvious thermal boundary resistance and anisotropic heat conduction still remain major bottlenecks for efficient heat dissipation. Herein, a biomimetic design enabled by radially aligned, bimodal graphene frameworks (RG-Fin) is proposed to achieve highly efficient and isotropic thermal transport. An interconnected RG skeleton is prepared via a radial ice-template method, serving as the primary expressway for isotropic heat conduction. Tree-leaf-like graphene nanofins are vertically grown on the RG surface to provide additional thermal pathways for bimodal phonon transportation, which can reduce the thermal boundary resistance without degrading the thermal properties of the skeleton. An RG-Fin composite exhibits a superior thermal conductivity of 4.01 W m-1 K-1 (almost 20 times that of a polymer) at an ultralow loading of 1.53 vol%, demonstrating an exceptionally large thermal conductivity enhancement efficiency of 1247%, which far exceeds those of graphene-based polymer composites. Further theoretical analysis and finite element simulations reveal the critical role of the nanofins in significantly decreasing the thermal boundary resistance (by almost 27-fold). Finally, the practical thermal management of running a CPU module is demonstrated, in which the heating-up rate of the RG-Fin composite is ∼2.0 times that of a pure polymer. This strategy provides an innovative avenue for designing radially aligned networks to realize isotropic and efficient thermoconductive composites for thermal management.

SELECTION OF CITATIONS
SEARCH DETAIL
...