Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.136
Filter
1.
Cell ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38981482

ABSTRACT

Cellular senescence is an irreversible state of cell-cycle arrest induced by various stresses, including aberrant oncogene activation, telomere shortening, and DNA damage. Through a genome-wide screen, we discovered a conserved small nucleolar RNA (snoRNA), SNORA13, that is required for multiple forms of senescence in human cells and mice. Although SNORA13 guides the pseudouridylation of a conserved nucleotide in the ribosomal decoding center, loss of this snoRNA minimally impacts translation. Instead, we found that SNORA13 negatively regulates ribosome biogenesis. Senescence-inducing stress perturbs ribosome biogenesis, resulting in the accumulation of free ribosomal proteins (RPs) that trigger p53 activation. SNORA13 interacts directly with RPL23, decreasing its incorporation into maturing 60S subunits and, consequently, increasing the pool of free RPs, thereby promoting p53-mediated senescence. Thus, SNORA13 regulates ribosome biogenesis and the p53 pathway through a non-canonical mechanism distinct from its role in guiding RNA modification. These findings expand our understanding of snoRNA functions and their roles in cellular signaling.

2.
Mol Carcinog ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980215

ABSTRACT

γ-Tocotrienol (γ-T3) is a major subtype of vitamin E, mainly extracted from palm trees, barley, walnuts, and other plants. γ-T3 has effects on anti-inflammation, anti-oxidation, and potential chemoprevention against malignancies. It is still uncompleted to understand the effect of γ-T3 on the inhibitory mechanism of cancer. This study aimed to investigate whether γ-T3 enhanced autophagy in gastric cancer and the underlying molecular mechanism. The results showed that γ-T3 (0-90 µmol/L) inhibited the proliferation of gastric cancer MKN45 cells and AGS cells, and arrested the cell cycle at the G0/G1 phase in a dose-dependent manner. Autophagy was increased in MKN45 cells treated with γ-T3 (0-45 µmol/L), especially at a dose of 30 µmol/L for 24 h. These effects were reversed by 3-methyladenine pretreatment. Furthermore, γ-T3 (30 µmol/L) also significantly downregulated the expression of pGSK-3ß (ser9) and ß-catenin protein in MKN45 cells, and γ-T3 (20 mg/kg b.w.) effectively decreased the growth of MKN45 cell xenografts in BABL/c mice. GSK-3ß inhibitor-CHIR-99021 reversed the negative regulation of GSK-3ß/ß-Catenin signaling and autophagy. Our findings indicated that γ-T3 enhances autophagy in gastric cancer cells mediated by GSK-3ß/ß-Catenin signaling, which provides new insights into the role of γ-T3 enhancing autophagy in gastric cancer.

3.
Langmuir ; 40(28): 14384-14398, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38950117

ABSTRACT

Laser-assisted electrochemical machining (ECM) is an ideal manufacturing method for Inconel 718 (IN718) because of the method's high efficiency and good surface quality, and the basis for and key to laser-assisted ECM is its anodic electrochemical dissolution behavior. In this study, IN718 in a 10 wt % NaNO3 solution was subjected to innovative electrochemical testing and laser-assisted ECM experiments to investigate its corrosion properties and the passive film characteristics formed on its surface. The passivation-related behaviors and structures of the passive film were investigated based on open-circuit potentials, dynamic polarization, potentiostatic polarization, and electrochemical impedance spectroscopy. It was found that there was obvious active-passive-transpassive transition behavior, and the structure of the passive film in laser-assisted ECM exhibited pores and defects, resulting in weak corrosion resistance, compared with IN718 under ECM without laser irradiation. The chemical composition of the passive film was obtained by X-ray photoelectron spectroscopy. The results showed that the passive film was composed mainly of a mixture of NiO, Ni(OH)2, Cr2O3, CrO3, Fe2O3, α-Fe2O3, α-FeOOH, Nb2O5, NbO, MoO3, MoO2, and TiO2. The passive film formed by laser-assisted ECM was rich in NiO and TiO2 and lacked Cr2O3 and MoO3, which validated its pores and defect structures. A corresponding schematic model was also proposed to characterize the interface structure between the IN718 substrate and the passive film. Laser-assisted ECM tests were performed under different current densities and machining times, and the corrosion morphology of IN718 was identified. Corrosion pits and a loose product layer appeared on the machined surface at low current densities, and the dissolution mechanism was pitting. The quantity and depth of the corrosion pits dispersed on the machined surface clearly decreased as the current density increased. Finally, a quantitative corrosion model was established to characterize the dissolution behavior of IN718 in NaNO3 solution during laser-assisted ECM.

4.
Exp Eye Res ; 245: 109988, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964496

ABSTRACT

Autism spectrum disorder (ASD) is a group of neurodevelopment disorders characterized by deficits in social interaction and communication, and repetitive or stereotyped behavior. Autistic children are more likely to have vision problems, and ASD is unusually common among blind people. However, the mechanisms behind the vision disorders in autism are unclear. Stabilizing WNT-targeted scaffold protein Axin2 by XAV939 during embryonic development causes overproduction of cortical neurons and leads to autistic-like behaviors in mice. In this study, we investigated the relationship between vision abnormality and autism using an XAV939-induced mouse model of autism. We found that the mice receiving XAV939 had decreased amplitude of bright light-adaptive ERG. The amplitudes and latency of flash visual evoked potential recorded from XAV939-treated mice were lower and longer, respectively than in the control mice, suggesting that XAV939 inhibits visual signal processing and conductance. Anatomically, the diameters of RGC axons were reduced when Axin2 was stabilized during the development, and the optic fibers had defective myelin sheaths and reduced oligodendrocytes. The results suggest that the WNT signaling pathway is crucial for optic nerve development. This study provides experimental evidence that conditions interfering with brain development may also lead to visual problems, which in turn might exaggerate the autistic features in humans.


Subject(s)
Axin Protein , Disease Models, Animal , Evoked Potentials, Visual , Optic Nerve , Animals , Axin Protein/metabolism , Mice , Evoked Potentials, Visual/physiology , Optic Nerve/metabolism , Optic Nerve/pathology , Electroretinography , Mice, Inbred C57BL , Axons/pathology , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Male , Wnt Signaling Pathway/physiology , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/metabolism , Autistic Disorder/physiopathology , Autistic Disorder/metabolism
5.
Adv Sci (Weinh) ; : e2400196, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978353

ABSTRACT

Osteoarthritis is a highly prevalent progressive joint disease that still requires an optimal therapeutic approach. Intermittent fasting is an attractive dieting strategy for improving health. Here this study shows that intermittent fasting potently relieves medial meniscus (DMM)- or natural aging-induced osteoarthritic phenotypes. Osteocytes, the most abundant bone cells, secrete excess neuropeptide Y (NPY) during osteoarthritis, and this alteration can be altered by intermittent fasting. Both NPY and the NPY-abundant culture medium of osteocytes (OCY-CM) from osteoarthritic mice possess pro-inflammatory, pro-osteoclastic, and pro-neurite outgrowth effects, while OCY-CM from the intermittent fasting-treated osteoarthritic mice fails to induce significant stimulatory effects on inflammation, osteoclast formation, and neurite outgrowth. Depletion of osteocyte NPY significantly attenuates DMM-induced osteoarthritis and abolishes the benefits of intermittent fasting on osteoarthritis. This study suggests that osteocyte NPY is a key contributing factor in the pathogenesis of osteoarthritis and intermittent fasting represents a promising nonpharmacological antiosteoarthritis method by targeting osteocyte NPY.

6.
PeerJ ; 12: e17626, 2024.
Article in English | MEDLINE | ID: mdl-38948226

ABSTRACT

Background: Abnormal gait is prevalent among the elderly population, leading to reduced physical activity, increased risk of falls, and the potential development of dementia and disabilities, thus degrading the quality of life in later years. Numerous studies have highlighted the crucial roles of lower limb muscle strength asymmetry and static postural control in gait, and the reciprocal influence of lower limb muscle strength asymmetry on static postural control. However, research exploring the interrelationship between lower limb muscle strength asymmetry, static postural control, and gait performance has been limited. Methods: A total of 55 elderly participants aged 60 to 75 years were recruited. Isokinetic muscle strength testing was used to assess bilateral knee extension strength, and asymmetry values were calculated. Participants with asymmetry greater than 15% were categorized as the Asymmetry Group (AG), while those with asymmetry less than 15% were classified in the Symmetry Group (SG). Gait parameters were measured using a plantar pressure gait analysis system to evaluate gait performance, and static postural control was assessed through comfortable and narrow stance tests. Results: First, participants in the AG demonstrated inferior gait performance, characterized by slower gait speed, longer stance time and percentage of stance time in gait, and smaller swing time and percentage of swing time in gait. Spatial-temporal gait parameters of the weaker limb tended to be abnormal. Second, static postural control indices were higher in AG compared to SG in all aspects except for the area of ellipse during the comfortable stance with eyes open test. Third, abnormal gait parameters were associated with static postural control. Conclusion: Firstly, elderly individuals with lower limb muscle strength asymmetry are prone to abnormal gait, with the weaker limb exhibiting poorer gait performance. Secondly, lower limb muscle strength asymmetry contributes to diminished static postural control in the elderly. Thirdly, the mechanism underlying abnormal gait in the elderly due to lower limb muscle strength asymmetry may be linked to a decline in static postural control.


Subject(s)
Gait , Lower Extremity , Muscle Strength , Postural Balance , Humans , Aged , Muscle Strength/physiology , Male , Female , Postural Balance/physiology , Lower Extremity/physiology , Gait/physiology , Middle Aged
7.
Quant Imaging Med Surg ; 14(6): 4054-4066, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846302

ABSTRACT

Background: Pericoronary adipose tissue (PCAT) is a sensor of vascular inflammation. Elevated PCAT attenuation values indicate the presence of coronary inflammation in patients. However, it is unclear which clinical characteristics are associated with increased PCAT attenuation values in patients without coronary heart disease (CHD). The study aims to investigate the relationship between increased PCAT attenuation values and clinical characteristics of patients without CHD. Methods: We recruited 785 eligible patients without CHD who underwent coronary computed tomographic angiography (CCTA). Clinical data were recorded for each patient, and PCAT attenuation values for the left anterior descending branch (LADPCAT), left circumflex branch (LCXPCAT), and right coronary artery (RCAPCAT) were quantified by CCTA using fully automated software. Univariate and multivariate analyses were performed to identify the associations between different clinical characteristics and elevated LADPCAT, LCXPCAT, and RCAPCAT. Results: Univariate analysis showed body mass index (BMI) to be positively associated with LADPCAT (rs=0.109), LCXPCAT (rs=0.076), and RCAPCAT (rs=0.083). Moreover, the duration of smoking, and drinking was positively associated with LADPCAT (rs=0.099, 0.165). Hyperlipidemia was positively associated with LADPCAT (rs=0.089) and RCAPCAT (rs=0.334), while statin use was negatively associated with RCAPCAT (rs=-0.145). Multivariate analysis showed that the significant determinants of LADPCAT were BMI (ß=0.359, P=0.001), duration of smoking (ß=2.612, P=0.002), drinking (ß=4.106, P<0.001), and hyperlipidemia (ß=1.664, P=0.027). LCXPCAT was associated with BMI (ß=0.218, P=0.024), while RCAPCAT was associated with hyperlipidemia (ß=6.110, P<0.001) and statin use (ß=-3.338, P<0.001). Conclusions: In patients without CHD, the PCAT attenuation values measured using CCTA were associated with various clinical characteristics. LADPCAT was associated with BMI, smoking duration, drinking, and hyperlipidemia. On the other hand, LCXPCAT was associated with BMI, while RCAPCAT was associated with hyperlipidemia and statin use.

8.
J Clin Invest ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38875287

ABSTRACT

It is unknown which post-transcriptional regulatory mechanisms are required for oncogenic competence. Here, we show that the LIN28 family of RNA-binding proteins (RBPs), which facilitate post-transcriptional RNA metabolism within ribonucleoprotein networks, are essential for the initiation of diverse oncotypes of hepatocellular carcinoma (HCC). In HCC models driven by NRASG12V/Tp53, CTNNB1/YAP/Tp53, or AKT/Tp53, mice without Lin28a and Lin28b were markedly impaired in cancer initiation. We biochemically defined an oncofetal regulon of 15 factors connected to Lin28 through direct mRNA and protein interactions. Interestingly, all were RBPs and only 1 of 15 is a Let-7 target. Polysome profiling and reporter assays showed that LIN28B directly increased the translation of 8 of these 15 RBPs. As expected, overexpression of LIN28B and IGFBP1-3 were able to genetically rescue cancer initiation. Using this platform to probe components downstream of LIN28, we found that 8 target RBPs were able to restore NRASG12V/Tp53 cancer formation in Lin28a/b deficient mice. Furthermore, these LIN28B targets promote cancer initiation through an increase in protein synthesis. LIN28B, central to an RNP regulon that increases translation of RBPs, is important for tumor initiation in the liver.

9.
Front Psychol ; 15: 1368224, 2024.
Article in English | MEDLINE | ID: mdl-38903462

ABSTRACT

This study investigated the resource allocation of Chinese sixth-graders and the role of peer relationship in different resource conditions (N = 132, Mage = 11. 35 years, SD = 0.60). We designed the resource quantity as a between-group variable, with one group participating in a resource-limited experiment and another group in a resource-abundant experiment. Both groups of children allocated token resources to three types of peers relationships: good friends, disliked individuals, and strangers. Based on our experimental hypotheses, we presupposed three experimental outcomes: selfish allocation, equal allocation, and altruistic allocation. To analyze the data, we employed multivariate unordered regression analysis and performed two rounds of regression analyses using both selfish and altruistic allocations as reference categories to enhance the statistical power of regression model. Our results reveal that the resource quantity had a significant hindering effect on children's allocation behaviors, as the amount of available resources for allocation increased, so did their willingness to allocate selfishly. It was also found that an increase in resources led to a decrease in the proportion of children allocating equally. Nonetheless, the results still revealed generalized peer relationship preferences: children tended to allocate more resources to friends than to individuals they disliked. But when faced with disliked individuals, they were relatively more likely to allocate equally. Finally, we observed the proportion of equal allocation and discussed the similar impact of inequality aversion, different allocation contexts, and children's theory of mind on equitable allocation among sixth-graders.

10.
Front Public Health ; 12: 1418851, 2024.
Article in English | MEDLINE | ID: mdl-38903583

ABSTRACT

Introduction: Travel satisfaction as experienced by rural residents is closely related to personal physical and mental health, as well as rural economic conditions. An improved rural road environment can be expected to enhance villagers' satisfaction with regards to visits to markets, but to date this has not been established empirically. Methods: In this study, a questionnaire was designed to obtain local residents' evaluations of road environment characteristics for periodic market travel. And we use an Oprobit regression model and Importance-Performance Map Analysis (IPMA) to explore the heterogeneity of the 14 key elements of the "home-to-market" road environment impact on villagers' satisfaction under different modes of travel. Results: The results of the study reveal that villagers expressed dissatisfaction with the current lack of sidewalks and non-motorized paths, and except for road traffic disturbances and road deterioration, which did not significantly affect mode of travel, other factors proved significant. Significantly, bus services are associated with a significant positive effect on walking, non-motorized and bus travel satisfaction, while distance travel also affects walking, non-motorized and motorized travel satisfaction. It is worth noting that greening and service facilities negatively affect motorized travel satisfaction. In summary, road width, sidewalks, bus service, and road deterioration, are among the elements most in need of urgent improvement for all modes of travel. Discussion: The characteristics of the road environment that influence satisfaction with travel to the periodic market vary by travel mode, and this study is hoped to provide data support and optimization recommendations for the improvement of the rural road environment in China and other countries.


Subject(s)
Personal Satisfaction , Rural Population , Travel , Humans , Rural Population/statistics & numerical data , Surveys and Questionnaires , Travel/statistics & numerical data , Female , Male , Adult , Middle Aged , Environment Design , Walking/statistics & numerical data , Transportation , China
11.
Cell Metab ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38901424

ABSTRACT

Somatic mutations in non-malignant tissues are selected for because they confer increased clonal fitness. However, it is uncertain whether these clones can benefit organ health. Here, ultra-deep targeted sequencing of 150 liver samples from 30 chronic liver disease patients revealed recurrent somatic mutations. PKD1 mutations were observed in 30% of patients, whereas they were only detected in 1.3% of hepatocellular carcinomas (HCCs). To interrogate tumor suppressor functionality, we perturbed PKD1 in two HCC cell lines and six in vivo models, in some cases showing that PKD1 loss protected against HCC, but in most cases showing no impact. However, Pkd1 haploinsufficiency accelerated regeneration after partial hepatectomy. We tested Pkd1 in fatty liver disease, showing that Pkd1 loss was protective against steatosis and glucose intolerance. Mechanistically, Pkd1 loss selectively increased mTOR signaling without SREBP-1c activation. In summary, PKD1 mutations exert adaptive functionality on the organ level without increasing transformation risk.

12.
Acad Radiol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852002

ABSTRACT

RATIONALE AND OBJECTIVES: The pericoronary fat attenuation index (FAI) values around plaques may reveal the relationship between periplaque vascular inflammation and different plaque component volume fractions. We aimed to evaluate the potential associations between periplaque FAI values and plaque component volume fractions. MATERIALS AND METHODS: 496 patients (1078 lesions) with coronary artery disease, who underwent computed tomography angiography (CCTA) between September 2022 and August 2023, were analyzed retrospectively. Each lesion was characterized and the plaque component volume fractions and periplaque FAI values were measured. Multiple linear regression, weighted quantile sum (WQS) regression, and quantile g-computation (Qgcomp) were used to explore the relationship between plaque component volume fractions and the risk of elevated periplaque FAI values. RESULTS: After adjusting for clinical characteristics, multiple linear regression identified that lipid components volume fraction (ß = 0.162, P < 0.001) were independent risk factors for elevated periplaque FAI values whereas calcified components volume fraction (ß = -0.066, P = 0.025) were independent protective factors. The WQS regression models indicated an increase in the overall confounding effect of the adjusted lipid indices and plaque composition volume fraction on the risk of elevated periplaque FAI values (P = 0.004). Qgcomp analysis indicated lipid component volume fraction and calcified component volume fraction was positively and negatively correlated with elevated plaque FAI values, respectively (all P < 0.05). CONCLUSIONS: Periplaque FAI values quantified by CCTA were strongly correlated with lipid and calcification component volume fractions.

13.
Dalton Trans ; 53(24): 10226-10234, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38828535

ABSTRACT

In aqueous solution, a novel triangle-like tungstovanadate estertin derivative K10H10.5[(W4O15(H2O)2){(SnCH2CH2COO)2(V0.75W10.75/V0.25O39)}{{(SnCH2CH2COO)2(µ-OH)}2(SnCH2CH2COO)(VW10O37)}2]·31H2O ((SnR)8-V3W35, R = CH2CH2COO) was assembled by a conventional synthetic method. (SnR)8-V3W35 is composed of one [VW11O39]7- ({VW11}) and two [VW10O37]9- ({VW10}) units connected by eight [Sn(CH2)2COO]2+ groups and a {W4O19} cluster. Interestingly, there exists a pentagonal bipyramid WO7 polyhedral center surrounded by two SnCO5 and three WO6 octahedra, forming a pentagonal {(WO7)W3(SnR)2} cluster in this polyoxometalate (POM), which is also the first example of a pentagonal structure formed by transition metals (TMs) and main group organometals in the POM family. Furthermore, the structure of this organic-inorganic hybrid POM also exhibits the largest number of organotin groups introduced into the POM system. It was characterized with various physico-chemical and spectroscopic methods, including X-ray single crystal and powder diffraction analysis, 119Sn and 51V NMR, IR, thermal gravimetric analysis (TGA), etc. In addition, the catalytic activity of (SnR)8-V3W35 as a mimic of peroxidase was evaluated using o-phenylenediamine (OPD) as a peroxidase substrate. The major factors influencing the oxidation reaction such as pH, the dosage of (SnR)8-V3W35, and concentrations of OPD and H2O2 were mainly studied. (SnR)8-V3W35 exhibits good peroxidase-like catalytic activity. From another perspective, the successful acquisition of (SnR)8-V3W35 further proves the instability and easy reassembly characteristics of TM-sandwich-type tungstovanadates, which also provides a new assembly strategy for synthesizing POM-estertin derivatives.

14.
Eur J Radiol ; 177: 111571, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38925043

ABSTRACT

BACKGROUND AND OBJECTIVES: Collateral status is a pivotal determinant of clinical outcomes in acute ischemic stroke (AIS); however, its evaluation can be challenging. We investigated the predictive value of CT perfusion (CTP) derived time and density alterations versus CTP for collateral status prediction in AIS. METHODS: Consecutive patients with anterior circulation occlusion within 24 h were retrospectively included. Time-density curves of the CTP specified ischemic core, penumbra, and the corresponding contralateral unaffected brain were obtained. The collateral status was dichotomised into robust (4-5 scores) and poor (0-3 scores) using multiphase collateral scoring, as described by Menon et al.. Receiver operating characteristic curves and multivariable regression analysis were performed to assess the predictive ability of CTP-designated tissue time and density alterations, CTP for robust collaterals, and favourable outcomes (mRS score of 0-2 at 90 days). RESULTS: One-hundred patients (median age, 68 years; interquartile range, 57-80 years; 61 men) were included. A smaller ischemic core, shorter peak time delay, lower peak density decrease, lower cerebral blood volume ratio, and cerebral blood flow ratio in the CTP specified ischemic core were significantly associated with robust collaterals (PFDR ≤ 0.004). The peak time delay demonstrated the highest diagnostic value (AUC, 0.74; P < 0.001) with 66.7 % sensitivity and 73.7 % specificity. Furthermore, the peak time delay of less than 8.5 s was an independent predictor of robust collaterals and favourable clinical outcomes. CONCLUSIONS: Robust collateral status was significantly associated with the peak time delay in the ischemic core. It is a promising image marker for predicting collateral status and functional outcomes in AIS.

15.
Mol Divers ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935305

ABSTRACT

The urokinase-type plasminogen activator receptor (uPAR) emerges as a key target for anti-metastasis owing to its pivotal role in facilitating the invasive and migratory processes of cancer cells. Recently, we identified the uPAR-targeting anti-metastatic ability of diltiazem (22), a commonly used antihypertensive agent. Fine-tuning the chemical structures of known hits represents a vital branch of drug development. To develop novel anti-metastatic drugs, we performed an interface-driven structural evolution strategy on 22. The uPAR-targeting and anti-cancer abilities of this antihypertensive drug wereidentified by us recently. Based on in silico strategy, including extensive molecular dynamics (MD) simulations, hierarchical binding free energy predictions, and ADMET profilings, we designed, synthesized, and identified three new diltiazem derivatives (221-8, 221-57, and 221-68) as uPAR inhibitors. Indeed, all of these three derivatives exhibited uPAR-depending inhibitory activity against PC-3 cell line invasion at micromolar level. Particularly, derivatives 221-68 and 221-8 showed enhanced uPAR-dependent inhibitory activity against the tumor cell invasion compared to the original compound. Microsecond timesclae MD simulations demonstrated the optimized moiety of 221-68 and 221-8 forming more comprehensive interactions with the uPAR, highlighting the reasonability of our strategy. This work introduces three novel uPAR inhibitors, which not only pave the way for the development of effective anti-metastatic therapeutics, but also emphasize the efficacy and robustness of an in silico-based lead compound optimization strategy in drug design.

16.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927609

ABSTRACT

MOTIVATION: High-resolution Hi-C data, capable of detecting chromatin features below the level of Topologically Associating Domains (TADs), significantly enhance our understanding of gene regulation. Micro-C, a variant of Hi-C incorporating a micrococcal nuclease (MNase) digestion step to examine interactions between nucleosome pairs, has been developed to overcome the resolution limitations of Hi-C. However, Micro-C experiments pose greater technical challenges compared to Hi-C, owing to the need for precise MNase digestion control and higher-resolution sequencing. Therefore, developing computational methods to derive Micro-C data from existing Hi-C datasets could lead to better usage of a large amount of existing Hi-C data in the scientific community and cost savings. RESULTS: We developed C2c ("high" or upper case C to "micro" or lower case c), a computational tool based on a residual neural network to learn the mapping between Hi-C and Micro-C contact matrices and then predict Micro-C contact matrices based on Hi-C contact matrices. Our evaluation results show that the predicted Micro-C contact matrices reveal more chromatin loops than the input Hi-C contact matrices, and more of the loops detected from predicted Micro-C match the promoter-enhancer interactions. Furthermore, we found that the mutual loops from real and predicted Micro-C better match the ChIA-PET data compared to Hi-C and real Micro-C loops, and the predicted Micro-C leads to more TAD-boundaries detected compared to the Hi-C data. The website URL of C2c can be found in the Data Availability Statement.


Subject(s)
Chromatin , Chromatin/genetics , Humans , Computational Biology/methods , Neural Networks, Computer , Micrococcal Nuclease/metabolism , Micrococcal Nuclease/genetics , Nucleosomes/genetics , Software
17.
Science ; 384(6701): eadj4301, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870309

ABSTRACT

Mitochondria are critical for proper organ function and mechanisms to promote mitochondrial health during regeneration would benefit tissue homeostasis. We report that during liver regeneration, proliferation is suppressed in electron transport chain (ETC)-dysfunctional hepatocytes due to an inability to generate acetyl-CoA from peripheral fatty acids through mitochondrial ß-oxidation. Alternative modes for acetyl-CoA production from pyruvate or acetate are suppressed in the setting of ETC dysfunction. This metabolic inflexibility forces a dependence on ETC-functional mitochondria and restoring acetyl-CoA production from pyruvate is sufficient to allow ETC-dysfunctional hepatocytes to proliferate. We propose that metabolic inflexibility within hepatocytes can be advantageous by limiting the expansion of ETC-dysfunctional cells.


Subject(s)
Acetyl Coenzyme A , Hepatocytes , Liver Regeneration , Mitochondria, Liver , Pyruvic Acid , Animals , Hepatocytes/metabolism , Acetyl Coenzyme A/metabolism , Mice , Pyruvic Acid/metabolism , Mitochondria, Liver/metabolism , Oxidation-Reduction , Cell Proliferation , Fatty Acids/metabolism , Liver/metabolism , Electron Transport , Mice, Inbred C57BL , Mitochondria/metabolism , Male
18.
IEEE Trans Med Imaging ; PP2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935475

ABSTRACT

Myocardial motion tracking stands as an essential clinical tool in the prevention and detection of cardiovascular diseases (CVDs), the foremost cause of death globally. However, current techniques suffer from incomplete and inaccurate motion estimation of the myocardium in both spatial and temporal dimensions, hindering the early identification of myocardial dysfunction. To address these challenges, this paper introduces the Neural Cardiac Motion Field (NeuralCMF). NeuralCMF leverages implicit neural representation (INR) to model the 3D structure and the comprehensive 6D forward/backward motion of the heart. This method surpasses pixel-wise limitations by offering the capability to continuously query the precise shape and motion of the myocardium at any specific point throughout the cardiac cycle, enhancing the detailed analysis of cardiac dynamics beyond traditional speckle tracking. Notably, NeuralCMF operates without the need for paired datasets, and its optimization is self-supervised through the physics knowledge priors in both space and time dimensions, ensuring compatibility with both 2D and 3D echocardiogram video inputs. Experimental validations across three representative datasets support the robustness and innovative nature of the NeuralCMF, marking significant advantages over existing state-of-the-art methods in cardiac imaging and motion tracking. Code is available at: https://njuvision.github.io/NeuralCMF.

19.
Bioresour Bioprocess ; 11(1): 61, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916814

ABSTRACT

Phospholipase A1 (PLA1) is a kind of specific phospholipid hydrolase widely used in food, medical, textile. However, limitations in its expression and enzymatic activity have prompted the investigation of the phospholipase-assisting protein PlaS. In this study, we elucidate the role of PlaS in enhancing the expression and activity of PlaA1 through N-terminal truncation. Our research demonstrates that truncating the N-terminal region of PlaS effectively overcomes its inhibitory effect on host cells, resulting in improved cell growth and increased protein solubility of the protein. The yeast two-hybrid assay confirms the interaction between PlaA1 and N-terminal truncated PlaS (∆N27 PlaS), highlighting their binding capabilities. Furthermore, in vitro studies using Biacore analysis reveal a concentration-dependent and specific binding between PlaA1 and ∆N27 PlaS, exhibiting high affinity. Molecular docking analysis provides insights into the hydrogen bond interactions between ∆N27 PlaS and PlaA1, identifying key amino acid residues crucial for their binding. Finally, the enzyme activity of PLA1 was boost to 8.4 U/mL by orthogonal test. Study significantly contributes to the understanding of the interaction mechanism between PlaS and PlaA1, offering potential strategies for enhancing PlaA1 activity through protein engineering approaches.

20.
Cell ; 187(14): 3602-3618.e20, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38823389

ABSTRACT

Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.


Subject(s)
Neoplasms , Purine Nucleotides , Purines , Animals , Mice , Purines/metabolism , Purines/biosynthesis , Neoplasms/metabolism , Neoplasms/pathology , Purine Nucleotides/metabolism , Humans , Inosine/metabolism , Hypoxanthine/metabolism , Mice, Inbred C57BL , Adenine/metabolism , Cell Line, Tumor , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...