Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(6): 8046-8053, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36723949

ABSTRACT

Layered O3-type transition metal oxides are promising cathode candidates for high-energy-density Li-ion batteries. However, the structural instability at the highly delithiated state and low kinetics at the fully lithiated state are arduous challenges to overcome. Here, a facile approach is developed to make secondary particles of Ni-rich materials with nanosheet primary grains. Because the alignment of the primary grains reduces internal stress buildup within the particle during charge-discharge and provides straightforward paths for Li transport, the as-synthesized Ni-rich materials do not undergo cracking upon cycling with higher overall Li+ ion diffusion rates. Specifically, a LiNi0.75Co0.14Mn0.11O2 cathode with nanosheet grains delivers a high reversible capacity of 206 mAh g-1 and shows ultrahigh cycling stability, e.g., 98% capacity retention over 500 cycles in a full cell with a graphite anode.

2.
ACS Appl Mater Interfaces ; 15(5): 6612-6620, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36693236

ABSTRACT

The lifespan of lithium-ion batteries varies enormously from fundamental study to practical applications. This big difference has been typically ascribed to the high degree of uncertainty in unpredictable and complicated operation conditions in real-life applications. Here, we report that the pause of the charging-discharging process, which is frequently operated in practice but rarely studied in academics, is an important reason for the performance degradation of the NCM111 cathode. It is found that the pause during cycling could trigger a remarkable drop in capacity, giving rise to ∼30% more capacity decay compared with the continuously cycled sample. In situ synchrotron X-ray diffraction analysis reveals that the harmful H1-H2 phase transition, which typically appears in the initial cycle but disappears in subsequent cycles, is reactivated by the pausing process. The anisotropic lattice strains that occur during the H1-H2 transition result in mechanical fractures that terminate with an inert NiO-type rock-salt phase on the surface of particles. The present study indicates that the discontinuous usage of rechargeable batteries is also a key factor for cycle life, which might provide a distinct perspective on the performance decay in practical applications.

3.
J Colloid Interface Sci ; 630(Pt B): 281-289, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36327731

ABSTRACT

Layered oxides based on manganese (Mn), rich in lithium (Li), and free of cobalt (Co) are the most promising cathode candidates used for lithium-ion batteries due to their high capacity, high voltage and low cost. These types of material can be written as xLi2MnO3·(1 - x) LiTMO2 (TM = Ni,Mn,etc.). Though, Li2MnO3 is known to have poor cycling stability and low capacity, which hinder its industrial application commercially. In this work, Li1.2Ni0.2Mn0.6O2 materials with different amounts of structural defects was successfully synthesized using powder metallurgy followed by different cooling processes in order to improve its electrochemical properties. Microstructural analyses and electrochemical measurements were carried out on the study samples synthesized by a combination of X-ray diffraction, transmission electron microscopy, and cyclic voltammetry. It is found that the disorder of the transition metal layer in Li2MnO3 promotes its electrochemical activity, whereas the Li/Ni antisites of the Li layer maintain the stability of its local structure. The material with optimal amount of structural defects had an initial capacity of 188.2 mAh g-1, while maintaining an excellent specific capacity of 144.2 mAh g-1 after 500 cycles at 1C. In comparison, Li1.2Ni0.2Mn0.6O2 without structural defect only gives a capacity of 40.8 mAh g-1 after cycling. This microstructural control strategy provides a simple and effective route to develop high-performance Co-free, Li-rich Mn-based cathode materials and scale-up manufacturing.

4.
Adv Sci (Weinh) ; 9(16): e2200498, 2022 May.
Article in English | MEDLINE | ID: mdl-35347886

ABSTRACT

Layered transition-metal (TM) oxides are ideal hosts for Li+ charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium-ion batteries. Herein a Ti/Mg co-doping strategy for a model P2-Na2/3 Ni1/3 Mn2/3 O2 cathode material is put forward to activate charge compensation through highly hybridized O2 p TM3 d covalent bonds. In this way, the interlayer OO electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2-O2 interlayer contraction into a moderate solid-solution-type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches.

5.
Nanotechnology ; 32(29)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33780915

ABSTRACT

Layered LiNixCoyMn1-x-yO2(NCM) is expected to dominate the future cathode technology of the automotive industry, due to its high energy density and low cost. Despite its excellent prospects, however, the severe capacity decay of NCM cathodes has prevented this promising material from achieving further success. The mechanism underlying this phenomenon is controversial and has been generally understood as arising from the complex structural changes that take place upon Li-(de)intercalation. However, deeper insight has not been available due to unclear structural kinetics, in particular, in cycled NCM cathodes. For this study, we conductedin situhigh-energy synchrotron x-ray diffraction (XRD) measurements on a typical LiNi0.5Co0.2Mn0.3O2(NCM523) cathode that had been operated for 90 cycles, then compared the results with those collected from a fresh NCM532 electrode. It was revealed that the H1-H2 phase transition that only occurs at the first cycle is irreversible. Remarkably, thec-contraction triggered by the H2-H3 transition, which is expected to be the major cause of intergranular cracks in electrodes, became even more profound after cycling. Combining the above results with electrochemical testing and microscopic imaging, we discuss the interplay between structural dynamics and performance degradation in NCM532 in detail. This study provides key evidence for a mechanically induced capacity decay mechanism, which is expected to be extended to NCM materials with various compositions.

6.
Adv Mater ; 32(26): e2001113, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32431024

ABSTRACT

Rechargeable zinc-ion batteries (ZIBs) are emerging as a promising alternative for Li-ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2 O5 . In this way, a remarkably enlarged interlayer distance (13.90 Å) can be constructed alternatively between the VO layers, offering expediting channels for facile Zn2+ diffusion. Importantly, the electrostatic interactions between the Zn2+ and the host O2- , which is another key factor in hindering the Zn2+ diffusion kinetics, can be effectively blocked by the unique π-conjugated structure of PANI. As a result, the PANI-intercalated V2 O5 exhibits a stable and highly reversible electrochemical reaction during repetitive Zn2+ insertion and extraction, as demonstrated by in situ synchrotron X-ray diffraction and Raman studies. Further first-principles calculations clearly reveal a remarkably lowered binding energy between Zn2+ and host O2- , which explains the favorable kinetics in PANI-intercalated V2 O5 . Benefitting from the above, the overall electrochemical performance of PANI-intercalated V2 O5 electrode is remarkable improved, exhibiting excellent high rate capability of 197.1 mAh g-1 at current density of 20 A g-1 with capacity retention of 97.6% over 2000 cycles.

7.
ACS Appl Mater Interfaces ; 10(39): 33493-33506, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30203959

ABSTRACT

Disulfide-crosslinked hollow polyelectrolyte microcapsules composed of thiolated chitosan (CS-SH) and hyaluronic acid (HA-SH) were prepared by combining the layer-by-layer (LBL) technique and horseradish peroxidase (HRP)-mediated oxidative cross-linking reaction in mild conditions. FITC-dextran-doped CaCO3 microspheres were used as template core and removed after LBL depositing CS-SH and HA-SH on the surface. The disulfide-crosslinked (CS/HA) microcapsules were readily fabricated by HRP-mediated oxidative coupling of the thiol groups in CS/HA shell layer in the presence of HRP (10 units/mL) and Tyramine hydrochloride (Tyr, 35 mmol/L). The kinetics of enzymatic disulfide-crosslinking reaction was investigated through the real-time monitoring of the consumption of thiol groups by UV absorption spectra. It found that the formation of disulfide linkages by the enzymatic thiol oxidation reaction showed a gradual acceleration. The disulfide-crosslinked CS/HA hydrogel were rapidly formed in gelation time between approximately 17 and 30 min, which were dependent on the concentrations of HRP and Tyr. The disulfide linkages endowed the microcapsule-enhanced physical stability and low permeability under physiological conditions and redox-responsive degradability in reducing environments. The structural stability of disulfide-crosslinked (CS/HA) microcapsules was visualized by confocal laser scanning microscopy in phosphate-buffered saline containing 5.0 mmol/L dithiothreitol (DTT) to evaluate the redox-responsive disassembly process. Redox-responsive controlled release of encapsulated FITC-dextran from the disulfide-crosslinked (CS/HA) microcapsules were obtained. The release profiles of FITC-dextran could be manipulated by controlling the shell thickness and the concentration of DTT. The conformational stability analyses and more than 94% esterase activity of released bovine serum albumin (BSA) from (CS/HA) microcapsules conformed that the structural integrity and bioactivity were well preserved during the encapsulation and release process. The microcapsules exhibited excellent cytocompatibility for HEK 293 cells up to a concentration of 1.0 mg/mL. The microcapsules efficiently delivered loaded FITC-BSA into HeLa cells and released the protein in the reducing cytosol. This study proposed a novel approach for producing disulfide-crosslinked microcarriers for intracellular delivery and redox-responsive controlled release of protein.


Subject(s)
Capsules/chemistry , Chitosan/chemistry , Disulfides/chemistry , Hyaluronic Acid/chemistry , Animals , Cattle , HEK293 Cells , HeLa Cells , Horseradish Peroxidase/metabolism , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Oxidation-Reduction , Serum Albumin, Bovine/chemistry , Spectroscopy, Fourier Transform Infrared , Tyramine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...