Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Transplant ; 31: 9636897221138037, 2022.
Article in English | MEDLINE | ID: mdl-36377088

ABSTRACT

Immunotherapy with immune checkpoint inhibitors had achieved great success. However, only a subset of patients responds positively to these therapies. The latest study published on Nature by Chou and colleagues found a new T cell subset from tumor-infiltrating T cells which lack PD-1 on the cell surface and potent cytotoxic activities against tumor cells. This finding provides a novel insight into the development of new therapies for tumors that do not respond to immune checkpoint blockade in the future.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Immunotherapy , Neoplasms/therapy , Antineoplastic Agents/pharmacology , T-Lymphocyte Subsets
2.
Front Pediatr ; 10: 985707, 2022.
Article in English | MEDLINE | ID: mdl-36034549

ABSTRACT

Background: Congenital tuberculosis is becoming increasingly common, but congenital tuberculosis infection in neonates following in vitro fertilization and embryo transfer (IVF-ET) has been rarely reported; a diagnosis of congenital tuberculosis is often delayed due to the non-specificity of maternal IVF treatments and clinical manifestations during pregnancy-particularly in low-birth-weight preterm infants. Case presentation: We herein report a case of congenital tuberculosis. The infant was born at 27+5 weeks of gestation and was admitted to the hospital due to hypopnea after birth. Due to a poor response to treatment, we conducted pathogenic microorganism metagenomic analysis to assess the nucleotide sequences within the Mycobacterium tuberculosis complex. After collecting sputum, the strains from the tuberculosis analysis were isolated and confirmed. From a detailed examination of the mother and in accordance with the child's congenital tuberculosis, we confirmed the diagnosis of pelvic tuberculosis. Conclusion: IVF treatment and pregnancy can exacerbate latent tuberculosis, especially in women from a family with a history of tuberculosis infections. We posit that the optimal way to prevent neonatal congenital tuberculosis in IVF-ET is to procure a detailed maternal medical or family history and to identify and treat maternal tuberculosis during IVF treatment.

3.
Cancer Manag Res ; 12: 3091-3097, 2020.
Article in English | MEDLINE | ID: mdl-32440207

ABSTRACT

INTRODUCTION: Clear cell renal cell carcinoma (ccRCC) is an aggressive human malignancy. Long non-coding RNAs (lncRNAs) are critical regulators in many malignant tumors, including ccRCC. The aim of this study is to investigate the expression, functions and molecular mechanisms of lncRNA TTN-AS1 in ccRCC. METHODS: A total of 145 paired cancer and normal tissues were collected from patients with ccRCC. The expression levels of TTN-AS1 and miR-195 in the tissues or cells were measured by RT-qPCR analysis. The expression levels of cyclin D1 protein were measured by Western blot analysis. Cell proliferation and cell cycle distribution were detected by MTT assay and flow cytometer analysis, respectively. The binding relationship between miR-195 and TTN-AS1 or cyclin D1 mRNA was validated by dual-luciferase reporter assay. RESULTS: Our results revealed that TTN-AS1 expression levels in human ccRCC tissues and cell lines were markedly increased. High expression of TTN-AS1 was closely associated with adverse clinicopathological characteristics of ccRCC patients. Gain- and loss-of-function experiments showed that TTN-AS1 overexpression promoted the proliferation and cell cycle transition of ccRCC cells, while the malignant traits were obviously suppressed after TTN-AS1 knockdown. Mechanistically, miR-195 was found to bind with and to be negatively regulated by TTN-AS1 in ccRCC cells. Further, we showed that cyclin D1 is a direct target of miR-195 in ccRCC, and rescue assays verified that restoration of miR-195 expression partially blocked the oncogenic effects of TTN-AS1 in ccRCC cells. CONCLUSION: Our study provides a novel mechanism of TTN-AS1/miR-195/cyclin D1 regulatory axis in ccRCC, which may become a breakthrough for ccRCC therapy in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...