Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Liver Int ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963300

ABSTRACT

BACKGROUND AND AIMS: Liver injury is one of the common complications of paraquat (PQ) poisoning, but whether the degree of liver injury is related to patient prognosis is still controversial. This study aimed to investigate whether liver injury was a risk factor for death in PQ-poisoned patients. METHODS: We conducted a retrospective cohort study of PQ-poisoned patients from the past 10 years (2011-2020) from a large tertiary academic medical centre in China. PQ-poisoned patients were divided into a normal liver function group (n = 580) and a liver injury group (n = 60). Propensity score matching (PSM) analysis was then performed. RESULTS: A total of 640 patients with PQ poisoning were included in this study. To reduce the impact of bias, dose of PQ, urinary PQ concentration and time from poisoning to hospital admission were matched between the two groups. A 3:1 PSM analysis was performed, ultimately including 240 patients. Compared with the normal liver function group, patients in the liver injury group were older, had a higher R value ([ALT/ULN]/[ALP/ULN]) (p < .001) and had a higher mortality rate. Cox regression analysis showed that there was no significant association between alanine aminotransferase, alkaline phosphatase, total bilirubin levels and hazard of death, but age, PQ dose, creatine kinase isoenzyme, creatine kinase, white blood cell count, neutrophil percentage and lymphocyte percentage were associated with mortality in patients with PQ poisoning. CONCLUSIONS: The occurrence of liver injury within 48 h after PQ poisoning was a risk factor for mortality, and such liver injury was likely of a hepatocellular nature. Age, PQ dose, creatine kinase isoenzyme and white blood cell count were positively correlated with mortality, while creatine kinase, percentage of neutrophils and lymphocytes were inversely correlated.

2.
Pestic Biochem Physiol ; 197: 105647, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38072522

ABSTRACT

Paraquat (PQ) is a highly effective and highly toxic herbicide that is highly toxic to both humans and animals. Pulmonary fibrosis is the primary cause of fatality in patients with PQ poisoning, there is no effective drug treatment yet. 2-Methoxyestradiol (2ME) is a natural metabolite of estradiol with anti-tumor, anti-angiogenesis, and anti-proliferative effects. Whether 2ME has the potential to inhibit pulmonary fibrosis induced by PQ is unclear. This study aims to investigate the potential effects and mechanism of 2ME on PQ-induced pulmonary fibrosis. C57BL/6 mice and A549 cells were exposed to PQ to establish pulmonary fibrosis model. In vivo, Hematoxylin and eosin (H&E) staining was utilized to assess the pathological characteristics. Masson's trichrome staining was employed to evaluate the collagen deposition. Western blot and immunohistochemistry were conducted to determine the expressions of fibrosis markers. In vitro, the expressions of epithelial-mesenchymal transition (EMT) markers were detected using western blot and immunofluorescence to evaluated the potential inhibition of PQ-induced EMT by 2ME. And proteins associated with the TGF-ß1/Smad2/3 signaling pathway were measured by western blot in vivo and in vitro. The result found that 2ME can ameliorated PQ-induced pulmonary fibrosis and inhibit the activation of TGF-ß1/Smad2/3 signaling pathway. These findings suggest that 2ME may serve as a potential therapeutic agent for treating PQ-induced pulmonary fibrosis.


Subject(s)
Paraquat , Pulmonary Fibrosis , Humans , Mice , Animals , Paraquat/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/therapeutic use , 2-Methoxyestradiol/pharmacology , 2-Methoxyestradiol/therapeutic use , Mice, Inbred C57BL , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...