Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(3): e2306145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37903216

ABSTRACT

Rechargeability in zinc (Zn) batteries is limited by anode irreversibility. The practical lean electrolytes exacerbate the issue, compromising the cost benefits of zinc batteries for large-scale energy storage. In this study, a zinc-coordinated interphase is developed to avoid chemical corrosion and stabilize zinc anodes. The interphase promotes Zn2+ ions to selectively bind with histidine and carboxylate ligands, creating a coordination environment with high affinity and fast diffusion due to thermodynamic stability and kinetic lability. Experiments and simulations indicate that interphase regulates dendrite-free electrodeposition and reduces side reactions. Implementing such labile coordination interphase results in increased cycling at 20 mA cm-2 and high reversibility of dendrite-free zinc plating/stripping for over 200 hours. A Zn||LiMn2 O4 cell with 74.7 mWh g-1 energy density and 99.7% Coulombic efficiency after 500 cycles realized enhanced reversibility using the labile coordination interphase. A lean-electrolyte full cell using only 10 µL mAh-1 electrolyte is also demonstrated with an elongated lifespan of 100 cycles, five times longer than bare Zn anodes. The cell offers a higher energy density than most existing aqueous batteries. This study presents a proof-of-concept design for low-electrolyte, high-energy-density batteries by modulating coordination interphases on Zn anodes.

2.
Mater Horiz ; 11(3): 688-699, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-37990914

ABSTRACT

The development of potent pseudocapacitive charge storage materials has emerged as an effective solution for closing the gap between high-energy density batteries and high-power density and long-lasting electrical double-layer capacitors. Sulfonyl compounds are ideal candidates owing to their rapid and reversible redox reactions. However, structural instability and low electrical conductivity hinder their practical application as electrode materials. This work addresses these challenges using a fast and clean laser process to interconnect sulfonated carbon nanodots into functionalized porous carbon frameworks. In this bottom-up approach, the resulting laser-converted three-dimensional (3D) turbostratic carbon foams serve as high-surface-area, conductive scaffolds for redox-active sulfonyl groups. This design enables efficient faradaic processes using pendant sulfonyl groups, leading to a high specific capacitance of 157.6 F g-1 due to the fast reversible redox reactions of sulfonyl moieties. Even at 20 A g-1, the capacitance remained at 78.4% due to the uniform distribution of redox-active sites on the graphitic domains. Additionally, the 3D-tsSC300 electrode showed remarkable cycling stability of >15 000 cycles. The dominant capacitive processes and kinetics were analysed using extensive electrochemical characterizations. Furthermore, we successfully used 3D-tsSC300 in flexible solid-state supercapacitors, achieving a high specific capacitance of up to 17.4 mF cm-2 and retaining 91.6% of the initial capacitance after 20 000 cycles of charge and discharge coupled with 90° bending tests. Additionally, an as-assembled flexible all-solid-state symmetric supercapacitor exhibits a high energy density of 12.6 mW h cm-3 at a high power density of 766.2 W cm-3, both normalized by the volumes of the full device, which is comparable or better than state-of-the-art commercial pseudocapacitors and hybrid capacitors. The integrated supercapacitor provides a wide potential window of 2.0 V using a serial circuit, showing great promise for metal-free energy storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...