Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Reprod Biomed Online ; 49(1): 103863, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38642471

ABSTRACT

RESEARCH QUESTION: Is the total duration of spontaneous blastocyst collapse to re-expansion before biopsy related to ploidy and live birth rates after single euploid blastocyst transfer? DESIGN: This was a retrospective cohort study of 600 preimplantation genetic testing cycles for aneuploidy (PGT-A) cycles, involving 2203 biopsied blastocysts, at a large reproductive medicine centre. Features of spontaneous blastocyst collapse from full to expanded stage, before biopsy, were observed using an embryoscope viewer for embryos cultured in a time-lapse incubator. In total, 568 cycles of frozen blastocyst transfers, either single euploid or mosaic, were performed. Correlations between collapse features and PGT-A outcomes were evaluated, as well as live birth rate, following euploid embryo transfer. RESULTS: Blastocysts with lower morphological quality or delayed development had significantly higher rates of collapse, multiple collapses, and a longer duration of collapse to re-expansion. After controlling for confounders, such as oocyte age, morphological quality of blastocyst, and day of biopsy, multivariate logistic regression revealed that the total duration of collapse to re-expansion was an independent predictor of lower euploidy rate; the multivariate OR was 0.85 (95% CI 0.77-0.95; P = 0.00). Furthermore, even with euploid embryo transfer, the probability of a live birth decreased as the total duration of collapse to re-expansion increased; the multivariate OR was 0.79 (95% CI 0.64-0.98; P = 0.033). CONCLUSION: The total duration of blastocyst collapse to re-expansion could be used as a predictor of lower euploidy and live birth rate. When developing blastocyst algorithms for pregnancy prediction, the duration of spontaneous blastocyst collapse should be included as a significant variable.

2.
Virol Sin ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38588947

ABSTRACT

African swine fever virus (ASFV) poses a significant threat to the global swine industry. Currently, there are no effective vaccines or treatments available to combat ASFV infection in pigs. The primary means of controlling the spread of the disease is through rapid detection and subsequent elimination of infected pig. Recently, a lower virulent ASFV isolate with a deleted EP402R gene (CD2v-deleted) has been reported in China, which further complicates the control of ASFV infection in pig farms. Furthermore, an EP402R-deleted ASFV variant has been developed as a potential live attenuated vaccine candidate strain. Therefore, it is crucial to develop detection methods that can distinguish wild-type and EP402R-deleted ASFV infections. In this study, two recombinant ASFV-p72 and -CD2v proteins were expressed using a prokaryotic system and used to immunize Bactrian camels. Subsequently, eight nanobodies against ASFV-p72 and ten nanobodies against ASFV-CD2v were screened. Following the production of these nanobodies with horse radish peroxidase (HRP) fusion proteins, the ASFV-p72-Nb2-HRP and ASFV-CD2v-Nb22-HRP fusions were selected for the development of two competitive ELISAs (cELISAs) to detect anti-ASFV antibodies. The two cELISAs exhibited high sensitivity, good specificity, repeatability, and stability. The coincidence rate between the two cELISAs and commercial ELISA kits was 98.6% and 97.6%, respectively. Collectively, the two cELISA for detecting antibodies against ASFV demonstrated ease of operation, a low cost, and a simple production process. The two cELISAs could determine whether pigs were infected with wild-type or CD2v-deleted ASFV, and could play an important role in monitoring ASFV infections in pig farms.

3.
Anticancer Drugs ; 35(5): 466-480, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38507233

ABSTRACT

Anoikis is a programmed cell death process triggered when cells are dislodged from the extracellular matrix. Numerous long noncoding RNAs (lncRNAs) have been identified as significant factors associated with anoikis resistance in various tumor types, including glioma, breast cancer, and bladder cancer. However, the relationship between lncRNAs and the prognosis of hepatocellular carcinoma (HCC) has received limited research attention. Further research is needed to investigate this potential link and understand the role of lncRNAs in the progression of HCC. We developed a prognostic signature based on the differential expression of lncRNAs implicated in anoikis in HCC. A co-expression network of anoikis-related mRNAs and lncRNAs was established using data obtained from The Cancer Genome Atlas (TCGA) for HCC. Cox regression analyses were conducted to formulate an anoikis-related lncRNA signature (ARlncSig) in a training cohort, which was subsequently validated in both a testing cohort and a combined dataset comprising the two cohorts. Receiver operating characteristic curves, nomograms, and decision curve analyses based on the ARlncSig score and clinical characteristics demonstrated robust predictive ability. Moreover, gene set enrichment analysis revealed significant enrichment of several immune processes in the high-risk group compared to the low-risk group. Furthermore, significant differences were observed in immune cell subpopulations, expression of immune checkpoint genes, and response to chemotherapy and immunotherapy between the high- and low-risk groups. Lastly, we validated the expression levels of the five lncRNAs included in the signature using quantitative real-time PCR. In conclusion, our ARlncSig model holds substantial predictive value regarding the prognosis of HCC patients and has the potential to provide clinical guidance for individualized immunotherapy. In this study, we obtained 36 genes associated with anoikis from the Gene Ontology and Gene Set Enrichment Analysis databases. We also identified 22 differentially expressed lncRNAs that were correlated with these genes using data from TCGA. Using Cox regression analyses, we developed an ARlncSig in a training cohort, which was then validated in both a testing cohort and a combined cohort comprising data from both cohorts. Additionally, we collected eight pairs of liver cancer tissues and adjacent tissues from the Affiliated Tumor Hospital of Nantong University for further analysis. The aim of this study was to investigate the potential of ARlncSig as a biomarker for liver cancer prognosis. The study developed a risk stratification system called ARlncSig, which uses five lncRNAs to categorize liver cancer patients into low- and high-risk groups. Patients in the high-risk group exhibited significantly lower overall survival rates compared to those in the low-risk group. The model's predictive performance was supported by various analyses including the receiver operating characteristic curve, nomogram calibration, clinical correlation analysis, and clinical decision curve. Additionally, differential analysis of immune function, immune checkpoint, response to chemotherapy, and immune cell subpopulations revealed significant differences between the high- and low-risk groups. Finally, quantitative real-time PCR validated the expression levels of the five lncRNAs. In conclusion, the ARlncSig model demonstrates critical predictive value in the prognosis of HCC patients and may provide clinical guidance for personalized immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/genetics , RNA, Long Noncoding/genetics , Anoikis/genetics , Liver Neoplasms/genetics , Prognosis
4.
Appl Microbiol Biotechnol ; 108(1): 276, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536521

ABSTRACT

The massive usage of phthalate esters (PAEs) has caused serious pollution. Bacterial degradation is a potential strategy to remove PAE contamination. So far, an increasing number of PAE-degrading strains have been isolated, and the catabolism of PAEs has been extensively studied and reviewed. However, the investigation into the bacterial PAE uptake process has received limited attention and remains preliminary. PAEs can interact spontaneously with compounds like peptidoglycan, lipopolysaccharides, and lipids on the bacterial cell envelope to migrate inside. However, this process compromises the structural integrity of the cells and causes disruptions. Thus, membrane protein-facilitated transport seems to be the main assimilation strategy in bacteria. So far, only an ATP-binding-cassette transporter PatDABC was proven to transport PAEs across the cytomembrane in a Gram-positive bacterium Rhodococcus jostii RHA1. Other cytomembrane proteins like major facilitator superfamily (MFS) proteins and outer membrane proteins in cell walls like FadL family channels, TonB-dependent transporters, and OmpW family proteins were only reported to facilitate the transport of PAEs analogs such as monoaromatic and polyaromatic hydrocarbons. The functions of these proteins in the intracellular transport of PAEs in bacteria await characterization and it is a promising avenue for future research on enhancing bacterial degradation of PAEs. KEY POINTS: • Membrane proteins on the bacterial cell envelope may be PAE transporters. • Most potential transporters need experimental validation.


Subject(s)
Phthalic Acids , Phthalic Acids/metabolism , Membrane Transport Proteins , ATP-Binding Cassette Transporters/metabolism , Bacteria/metabolism , Esters , Dibutyl Phthalate/chemistry , China
5.
J Virol ; 98(4): e0164923, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38548704

ABSTRACT

Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide, responsible for approximately 20 million infections annually. Among the three open reading frames (ORFs) of the HEV genome, the ORF3 protein is involved in virus release. However, the host proteins involved in HEV release need to be clarified. In this study, a host protein, thioredoxin domain-containing protein 5 (TXNDC5), interacted with the non-palmitoylated ORF3 protein by co-immunoprecipitation analysis. We determined that the overexpression or knockdown of TXNDC5 positively regulated HEV release from the host cells. The 17FCL19 mutation of the ORF3 protein lost the ability to interact with TXNDC5. The releasing amounts of HEV with the ORF3 mutation (FCL17-19SSP) were decreased compared with wild-type HEV. The overexpression of TXNDC5 can stabilize and increase ORF3 protein amounts, but not the TXNDC5 mutant with amino acids 1-88 deletion. Meanwhile, we determined that the function of TXNDC5 on the stabilization of ORF3 protein is independent of the Trx-like domains. Knockdown of TXNDC5 could lead to the degradation of ORF3 protein by the endoplasmic reticulum (ER)-associated protein degradation-proteasome system. However, the ORF3 protein cannot be degraded in the knockout-TXNDC5 stable cells, suggesting that it may hijack other proteins for its stabilization. Subsequently, we found that the other members of protein disulfide isomerase (PDI), including PDIA1, PDIA3, PDIA4, and PDIA6, can increase ORF3 protein amounts, and PDIA3 and PDIA6 interact with ORF3 protein. Collectively, our study suggested that HEV ORF3 protein can utilize TXNDC5 for its stability in ER to facilitate viral release. IMPORTANCE: Hepatitis E virus (HEV) infection is the leading cause of acute viral hepatitis worldwide. After the synthesis and modification in the cells, the mature ORF3 protein is essential for HEV release. However, the host protein involved in this process has yet to be determined. Here, we reported a novel host protein, thioredoxin domain-containing protein 5 (TXNDC5), as a chaperone, contributing to HEV release by facilitating ORF3 protein stability in the endoplasmic reticulum through interacting with non-palmitoylated ORF3 protein. However, we also found that in the knockout-TXNDC5 stable cell lines, the HEV ORF3 protein may hijack other proteins for its stabilization. For the first time, our study demonstrated the involvement of TXNDC5 in viral particle release. These findings provide some new insights into the process of the HEV life cycle, the interaction between HEV and host factors, and a new direction for antiviral design.


Subject(s)
Hepatitis E virus , Hepatitis E , Hepatitis, Viral, Human , Humans , Hepatitis E virus/genetics , Immunologic Factors , Protein Disulfide-Isomerases/genetics , Thioredoxins/genetics , Virion/metabolism
6.
J Virol ; 98(2): e0165023, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38271227

ABSTRACT

Vaccination is the most effective method to protect humans and animals from diseases. Anti-idiotype vaccines are safer due to their absence of pathogens. However, the commercial production of traditional anti-idiotype vaccines using monoclonal and polyclonal antibodies (mAb and pAb) is complex and has a high failure rate. The present study designed a novel, simple, low-cost strategy for developing anti-idiotype vaccines with nanobody technology. We used porcine circovirus type 2 (PCV2) as a viral model, which can result in serious economic loss in the pig industry. The neutralizing mAb-1E7 (Ab1) against PCV2 capsid protein (PCV2-Cap) was immunized in the camel. And 12 nanobodies against mAb-1E7 were screened. Among them, Nb61 (Ab2) targeted the idiotype epitope of mAb-1E7 and blocked mAb-1E7's binding to PCV2-Cap. Additionally, a high-dose Nb61 vaccination can also protect mice and pigs from PCV2 infection. Epitope mapping showed that mAb-1E7 recognized the 75NINDFL80 of PCV2-Cap and 101NYNDFLG107 of Nb61. Subsequently, the mAb-3G4 (Ab3) against Nb61 was produced and can neutralize PCV2 infection in the PK-15 cells. Structure analysis showed that the amino acids of mAb-1E7 and mAb-3G4 respective binding to PCV2-Cap and Nb61 were also similar on the amino acids sequences and spatial conformation. Collectively, our study first provided a strategy for producing nanobody-based anti-idiotype vaccines and identified that anti-idiotype nanobodies could mimic the antigen on amino acids and structures. Importantly, as more and more neutralization mAbs against different pathogens are prepared, anti-idiotype nanobody vaccines can be easily produced against the disease with our strategy, especially for dangerous pathogens.IMPORTANCEAnti-idiotype vaccines utilize idiotype-anti-idiotype network theory, eliminating the need for external antigens as vaccine candidates. Especially for dangerous pathogens, they were safer because they did not contact the live pathogenic microorganisms. However, developing anti-idiotype vaccines with traditional monoclonal and polyclonal antibodies is complex and has a high failure rate. We present a novel, universal, simple, low-cost strategy for producing anti-idiotype vaccines with nanobody technology. Using a neutralization antibody against PCV2-Cap, a nanobody (Ab2) was successfully produced and could mimic the neutralizing epitope of PCV2-Cap. The nanobody can induce protective immune responses against PCV2 infection in mice and pigs. It highlighted that the anti-idiotype vaccine using nanobody has a very good application in the future, especially for dangerous pathogens.


Subject(s)
Circoviridae Infections , Circovirus , Single-Domain Antibodies , Viral Vaccines , Animals , Humans , Mice , Capsid Proteins , Circoviridae Infections/prevention & control , Circoviridae Infections/veterinary , Epitopes , Swine , Viral Vaccines/chemistry , Viral Vaccines/immunology
7.
Vaccines (Basel) ; 11(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38140219

ABSTRACT

Previous reports have shown that heterologous boosting with the AD5-vectored COVID-19 vaccine Convidecia based on a primary series of two doses of inactivated vaccine induces increasing immune responses. However, the immune persistence until 6 months after the heterologous prime-boost immunization was limited. Participants were from two single-center, randomized, controlled, observer-blinded trials, which involved individuals of 18-59 years of age and over 60 years of age. Eligible participants who previously primed with one dose or two doses of CoronaVac were stratified and randomly assigned to inoculate a booster dose of Convidecia or CoronaVac. Neutralizing antibodies against a live SARS-CoV-2 prototype virus and Delta and Omicron (B.1.1.529) variants, pseudovirus neutralizing antibodies against Omicron BA.4/5 variants, and anti-SARS-CoV-2 RBD antibodies at month 6 were detected, and the fold decreases and rate difference were calculated by comparing the levels of antibodies at month 6 with the peak levels at month 1. The neutralizing antibody titers against prototype SARS-CoV-2, RBD-specific IgG antibodies, and the Delta variant in the heterologous regimen of the CoronaVac plus Convidecia groups were significantly higher than those of the homologous prime-boost groups. In three-dose regimen groups, the geometric mean titers (GMTs) of neutralizing antibodies against prototype SARS-CoV-2 were 30.6 (95% CI: 25.1; 37.2) in the heterologous boosting group versus 6.9 (95% CI: 5.6; 8.6) in the homologous boosting group (p < 0.001) at month 6 in participants aged 18-59 years, and in the two-dose regimen, the neutralizing antibody GMTs were 8.5 (95% CI: 6.2; 11.7) and 2.7 (2.3 to 3.1) (heterologous regimen group versus CoronaVac regimen group, p < 0.001). Participants aged over 60 years had similar levels of neutralizing antibodies against the prototype, with GMTs of 49.1 (38.0 to 63.6) in the group receiving two doses of CoronaVac plus one dose of Convidecia versus 9.4 (7.7 to 11.4) in the group receiving three doses of CoronaVac (p < 0.001) and 11.6 (8.4 to 16.0) in the group receiving one dose of CoronaVac and one dose of Convidecia versus 3.3 (2.7 to 4.0) in the group receiving two doses of CoronaVac (p < 0.001). Compared with day 14, over sixfold decreases in neutralizing antibody GMTs were observed in the heterologous groups of the three- or two-dose regimen groups of younger and elderly participants, while in the homologous regimen groups, the GMTs of neutralizing antibodies decreased about fivefold in the two age groups. The heterologous prime-boost regimen with two doses of CoronaVac and one dose of Convidecia was persistently more immunogenic than the regimen of the homologous prime-boost with three doses of CoronaVac.

8.
Front Plant Sci ; 14: 1243323, 2023.
Article in English | MEDLINE | ID: mdl-37719219

ABSTRACT

Introduction: Agarwood, the dark-brown resin produced by Aquilaria trees, has been widely used as incense, spice, perfume or traditional medicine and 2-(2-phenethyl) chromones (PECs) are the key markers responsible for agarwood formation. But the biosynthesis and regulatory mechanism of PECs were still not illuminated. The transcription factor of basic leucine zipper (bZIP) presented the pivotal regulatory roles in various secondary metabolites biosynthesis in plants, which might also contribute to regulate PECs biosynthesis. However, molecular evolution and function of bZIP are rarely reported in Malvales plants, especially in Aquilaria trees. Methods and results: Here, 1,150 bZIPs were comprehensively identified from twelve Malvales and model species genomes and the evolutionary process were subsequently analyzed. Duplication types and collinearity indicated that bZIP is an ancient or conserved TF family and recent whole genome duplication drove its evolution. Interesting is that fewer bZIPs in A. sinensis than that species also experienced two genome duplication events in Malvales. 62 AsbZIPs were divided into 13 subfamilies and gene structures, conservative domains, motifs, cis-elements, and nearby genes of AsbZIPs were further characterized. Seven AsbZIPs in subfamily D were significantly regulated by ethylene and agarwood inducer. As the typical representation of subfamily D, AsbZIP14 and AsbZIP41 were localized in nuclear and potentially regulated PECs biosynthesis by activating or suppressing type III polyketide synthases (PKSs) genes expression via interaction with the AsPKS promoters. Discussion: Our results provide a basis for molecular evolution of bZIP gene family in Malvales and facilitate the understanding the potential functions of AsbZIP in regulating 2-(2-phenethyl) chromone biosynthesis and agarwood formation.

9.
Reprod Biomed Online ; 47(3): 103242, 2023 09.
Article in English | MEDLINE | ID: mdl-37429765

ABSTRACT

RESEARCH QUESTION: Could objective embryo assessment using iDAScore Version 2.0 perform as well as conventional morphological assessment? DESIGN: A retrospective cohort study of fresh day 3 embryo transfer cycles was conducted at a large reproductive medicine centre. In total, 7786 embryos from 4328 cycles with known implantation data were cultured in a time-lapse incubator and included in the study. Fetal heartbeat (FHB) rate was analysed retrospectively using iDAScore Version 2.0 and conventional morphological assessment associated with the transferred embryos. The pregnancy-prediction performance of the two assessment methods was compared using area under the curve (AUC) values for predicting FHB. RESULTS: AUC values were significantly higher for iDAScore compared with morphological assessment for all cycles (0.62 versus 0.60; P = 0.005), single-embryo transfer cycles (0.63 versus 0.60; P = 0.043) and double-embryo transfer cycles (0.61 versus 0.59; P = 0.012). For the age subgroups, AUC values were significantly higher for iDAScore compared with morphological assessment in the <35 years subgroup (0.62 versus 0.60; P = 0.009); however, no significant difference was found in the ≥35 years subgroup. In terms of the number of blastomeres, AUC values were significantly higher for iDAScore compared with morphological assessment for both the <8c subgroup (0.67 versus 0.56; P < 0.001) and the ≥8c subgroup (0.58 versus 0.55; P = 0.012). CONCLUSIONS: iDAScore Version 2.0 performed as well as, or better than, conventional morphological assessment in fresh day 3 embryo transfer cycles. iDAScore Version 2.0 may therefore constitute a promising tool for selecting embryos with the highest likelihood of implantation.


Subject(s)
Deep Learning , Pregnancy , Female , Humans , Adult , Retrospective Studies , Time-Lapse Imaging , Embryo Implantation , Embryo Transfer/methods , Pregnancy Rate
10.
Front Immunol ; 14: 1167446, 2023.
Article in English | MEDLINE | ID: mdl-37275875

ABSTRACT

Background: Lung cancer is a common comorbidity of heart failure (HF). The early identification of the risk factors for lung cancer in patients with HF is crucial to early diagnosis and prognosis. Furthermore, oxidative stress and immune responses are the two critical biological processes shared by HF and lung cancer. Therefore, our study aimed to select the core genes in HF and then investigate the potential mechanisms underlying HF and lung cancer, including oxidative stress and immune responses through the selected genes. Methods: Differentially expressed genes (DEGs) were analyzed for HF using datasets extracted from the Gene Expression Omnibus database. Functional enrichment analysis was subsequently performed. Next, weighted gene co-expression network analysis was performed to select the core gene modules. Support vector machine models, the random forest method, and the least absolute shrinkage and selection operator (LASSO) algorithm were applied to construct a multigene signature. The diagnostic values of the signature genes were measured using receiver operating characteristic curves. Functional analysis of the signature genes and immune landscape was performed using single-sample gene set enrichment analysis. Finally, the oxidative stress-related genes in these signature genes were identified and validated in vitro in lung cancer cell lines. Results: The DEGs in the GSE57338 dataset were screened, and this dataset was then clustered into six modules using weighted gene co-expression network analysis; MEblue was significantly associated with HF (cor = -0.72, p < 0.001). Signature genes including extracellular matrix protein 2 (ECM2), methyltransferase-like 7B (METTL7B), meiosis-specific nuclear structural 1 (MNS1), and secreted frizzled-related protein 4 (SFRP4) were selected using support vector machine models, the LASSO algorithm, and the random forest method. The respective areas under the curve of the receiver operating characteristic curves of ECM2, METTL7B, MNS1, and SFRP4 were 0.939, 0.854, 0.941, and 0.926, respectively. Single-sample gene set enrichment analysis revealed significant differences in the immune landscape of the patients with HF and healthy subjects. Functional analysis also suggested that these signature genes may be involved in oxidative stress. In particular, METTL7B was highly expressed in lung cancer cell lines. Meanwhile, the correlation between METTL7B and oxidative stress was further verified using flow cytometry. Conclusion: We identified that ECM2, METTL7B, MNS1, and SFRP4 exhibit remarkable diagnostic performance in patients with HF. Of note, METTL7B may be involved in the co-occurrence of HF and lung cancer by affecting the oxidative stress immune responses.


Subject(s)
Heart Failure , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Heart Failure/genetics , Algorithms , Biological Transport , Oxidative Stress/genetics
11.
Int J Biol Macromol ; 244: 125302, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37315664

ABSTRACT

Trees in the genus Aquilaria produce agarwood, a valuable resin used in medicine, perfumes, and incense. 2-(2-Phenethyl)chromones (PECs) are characteristic components of agarwood; however, molecular mechanisms underlying PEC biosynthesis and regulation remain largely unknown. The R2R3-MYB transcription factors play important regulatory roles in the biosynthesis of various secondary metabolites. In this study, 101 R2R3-MYB genes in Aquilaria sinensis were systematically identified and analyzed at the genome-wide level. Transcriptomic analysis revealed that 19 R2R3-MYB genes were significantly regulated by an agarwood inducer, and showed significant correlations with PEC accumulation. Expression and evolutionary analyses revealed that AsMYB054, a subgroup 4 R2R3-MYB, was negatively correlated with PEC accumulation. AsMYB054 was located in the nucleus and functioned as a transcriptional repressor. Moreover, AsMYB054 could bind to the promoters of the PEC biosynthesis related genes AsPKS02 and AsPKS09, and inhibit their transcriptional activity. These findings suggested that AsMYB054 functions as a negative regulator of PEC biosynthesis via the inhibition of AsPKS02 and AsPKS09 in A. sinensis. Our results provide a comprehensive understanding of the R2R3-MYB subfamily in A. sinensis and lay a foundation for further functional analyses of R2R3-MYB genes in PEC biosynthesis.


Subject(s)
Chromones , Thymelaeaceae , Genes, myb , Transcription Factors/genetics , Transcription Factors/metabolism , Thymelaeaceae/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
12.
Lancet Reg Health West Pac ; : 100829, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360864

ABSTRACT

Background: People over 60 have been found to develop less protection after two doses of inactivated COVID-19 vaccines than younger people. Heterologous immunisation could potentially induce more robust immune responses compared to homologous immunisation. We aimed to assess the immunogenicity and safety of a heterologous immunisation with an adenovirus type 5-vectored vaccine (Ad5-nCOV, Convidecia) among elderly who were primed with an inactivated vaccine (CoronaVac) previously. Methods: We did a randomised, observer-blinded, non-inferiority trial in healthy adults aged 60 years and older in Lianshui County (Jiangsu, China) between August 26, 2021 and May 15, 2022. 199 eligible participants who had received two doses of CoronaVac in the past 3-6 months were randomised (1:1) to receive a third dose of Convidecia (group A, n = 99) or CoronaVac (group B, n = 100), while 100 participants primed with one dose of CoronaVac in the past 1-2 months were randomised equally to receive a second dose of Convidecia (group C, n = 50) or CoronaVac (group D, n = 50). Participants and investigators were masked to the vaccine received. Primary outcomes were the geometric mean titers (GMTs) of neutralising antibodies against live SARS-CoV-2 virus 14 days after boosting and 28-day adverse reactions. This study was registered with ClinicalTrials.govNCT04952727. Findings: A heterologous third dose of Convidecia resulted in a 6.2-fold (GMTs: 286.4 vs 48.2), 6.3-fold (45.9 vs 7.3) and 7.5-fold (32.9 vs 4.4) increase in neutralising antibodies against SARS-CoV-2 wild-type, delta (B.1.617.2) and omicron (BA.1.1) 14 days post boosting, respectively, compared with the homologous boost. The heterologous booster with Convidecia induced significantly higher neutralsing activities, with up to 91% inhibition in binding of Spike to ACE2 for BA.4 and BA.5 variants, compared with 35% inhibition induced by three doses of CoronaVac. For participants primed with one dose of CoronaVac, a heterologous dose of Convidecia induced higher neutralising antibodies against wild-type than two doses of CoronaVac (GMTs: 70.9 vs 9.3, p < 0.0001), but not for that against variants of concern (GMTs against delta: 5.0 vs 4.0, p = 0.4876; GMTs against omicron: 4.8 vs 3.7, p = 0.4707). Adverse reactions were reported by 8 (8.1%) participants in group A and 4 (4.0%) in group B (p > 0.05), and 8 (16.0%) in group C and 1 (2.0%) in group D (p = 0.031). Interpretation: In elderly individuals primed with two doses of CoronaVac, the heterologous immunisation with Convidecia induced strong antibodies against SARS-CoV-2 wildtype and variants of concern, which could be an alternative regimen for enhancing protection in this vulnerable population. Funding: National Natural Science Foundation of China, Jiangsu Provincial Key Research and Development Program, and Jiangsu Science Fund for Distinguished Young Scholars Program.

13.
JPEN J Parenter Enteral Nutr ; 47(5): 624-634, 2023 07.
Article in English | MEDLINE | ID: mdl-37094973

ABSTRACT

BACKGROUND: This study aimed to assess malnutrition using the Global Leadership Initiative on Malnutrition (GLIM) criteria and Subjective Global Assessment (SGA) at baseline and determine the GLIM criteria that best predicted unplanned hospitalization in outpatients with unintentional weight loss (UWL). METHODS: We performed a retrospective cohort study of 257 adult outpatients with UWL. The GLIM criteria and SGA agreement were reported using the Cohen kappa coefficient. Kaplan-Meier survival curves and adjusted Cox regression analyses were used for survival data. Logistic regression was used for the other correlation analysis. RESULTS: This study collected data from 257 patients for 2 years. Based on the GLIM criteria and SGA, malnutrition prevalence was 79.0% and 72.0%, respectively (κ = 0.728, P < 0.001). Using the SGA as a standard, GLIM had a sensitivity of 97.8%, a specificity of 69.4%, a positive predictive value of 89.2%, and a negative predictive value of 92.6%. Malnutrition was associated with higher rates of unplanned hospital admission independent of other prognostic factors (GLIM: hazard ratio [HR]=2.85, 95% CI=1.22-6.68; SGA: HR=2.07, 95% CI=1.13-3.79). Of the five GLIM criteria-related diagnostic combinations, disease burden or inflammation was the most important to predict unplanned hospital admission in multivariable analysis (HR=3.27, 95% CI=2.03-5.28). CONCLUSION: There was good agreement between the GLIM criteria and the SGA. GLIM-defined malnutrition, as well as all five GLIM criteria-related diagnosis combinations, had the potential to predict unplanned hospital admissions in outpatients with UWL within 2 years.


Subject(s)
Malnutrition , Outpatients , Adult , Humans , Leadership , Retrospective Studies , Weight Loss , Hospitalization , Malnutrition/diagnosis , Malnutrition/epidemiology , Hospitals , Nutrition Assessment , Nutritional Status
14.
Front Cardiovasc Med ; 10: 1080682, 2023.
Article in English | MEDLINE | ID: mdl-37008311

ABSTRACT

Background: Hypertension has been confirmed as an independent risk factor for cardiovascular disease and death. Few data were analyzed on deaths and disability-adjusted life years (DALYs) caused by hypertension in East Asia. We aimed to provide an overview of burden attributable to high blood pressure in China in the past 29 years, compared with those in Japan and South Korea. Methods: Data were collected from the 2019 Global Burden of Disease study on diseases due to high systolic blood pressure (SBP). We retrieved the age-standardized mortality rate (ASMR) and DALYs rate (ASDR) by gender, age, location, and sociodemographic index. The death and DALY trends were evaluated by estimated annual percentage change, with 95% confidence interval. Findings: Considerable differences were detected in the diseases attributable to high SBP in China, Japan, and South Korea. In 2019, the ASMR and ASDR of diseases due to high SBP in China were 153.34 (126.19, 182.49) per 100,000 population and 2,844.27 (2,391.91, 3,321.12) per 100,000 population, respectively, which was about 3.50-fold of those in another two countries. The elders and males had higher ASMR and ASDR in the three countries. Between 1990 and 2019, the declining trends were less pronounced in China for both the deaths and DALYs. Conclusions: The deaths and DALYs due to hypertension declined in China, Japan, and South Korea in the past 29 years, with China having the greatest burden.

15.
Lancet Respir Med ; 11(7): 613-623, 2023 07.
Article in English | MEDLINE | ID: mdl-36898400

ABSTRACT

BACKGROUND: Aerosolised Ad5-nCoV is the first approved mucosal respiratory COVID-19 vaccine to be used as a booster after the primary immunisation with COVID-19 vaccines. This study aimed to evaluate the safety and immunogenicity of aerosolised Ad5-nCoV, intramuscular Ad5-nCoV, or inactivated COVID-19 vaccine CoronaVac given as the second booster. METHODS: This is an open-label, parallel-controlled, phase 4 randomised trial enrolling healthy adult participants (≥18 years) who had completed a two-dose primary immunisation and a booster immunisation with inactivated COVID-19 vaccines (CoronaVac only) at least 6 months before, in Lianshui and Donghai counties, Jiangsu Province, China. We recruited eligible participants from previous trials in China (NCT04892459, NCT04952727, and NCT05043259) as cohort 1 (with the serum before and after the first booster dose available), and from eligible volunteers in Lianshui and Donghai counties, Jiangsu Province, as cohort 2. Participants were randomly assigned at a ratio of 1:1:1, using a web-based interactive response randomisation system, to receive the fourth dose (second booster) of aerosolised Ad5-nCoV (0·1 mL of 1·0 × 1011 viral particles per mL), intramuscular Ad5-nCoV (0·5 mL of 1·0 × 1011 viral particles per mL), or inactivated COVID-19 vaccine CoronaVac (0·5 mL), respectively. The co-primary outcomes were safety and immunogenicity of geometric mean titres (GMTs) of serum neutralising antibodies against prototype live SARS-CoV-2 virus 28 days after the vaccination, assessed on a per-protocol basis. Non-inferiority or superiority was achieved when the lower limit of the 95% CI of the GMT ratio (heterologous group vs homologous group) exceeded 0·67 or 1·0, respectively. This study was registered with ClinicalTrials.gov, NCT05303584 and is ongoing. FINDINGS: Between April 23 and May 23, 2022, from 367 volunteers screened for eligibility, 356 participants met eligibility criteria and received a dose of aerosolised Ad5-nCoV (n=117), intramuscular Ad5-nCoV (n=120), or CoronaVac (n=119). Within 28 days of booster vaccination, participants in the intramuscular Ad5-nCoV group reported a significantly higher frequency of adverse reactions than those in the aerosolised Ad5-nCoV and intramuscular CoronaVac groups (30% vs 9% and 14%, respectively; p<0·0001). No serious adverse events related to the vaccination were reported. The heterologous boosting with aerosolised Ad5-nCoV triggered a GMT of 672·4 (95% CI 539·7-837·7) and intramuscular Ad5-nCoV triggered a serum neutralising antibody GMT of 582·6 (505·0-672·2) 28 days after the booster dose, both of which were significantly higher than the GMT in the CoronaVac group (58·5 [48·0-71·4]; p<0·0001). INTERPRETATION: A heterologous fourth dose (second booster) with either aerosolised Ad5-nCoV or intramuscular Ad5-nCoV was safe and highly immunogenic in healthy adults who had been immunised with three doses of CoronaVac. FUNDING: National Natural Science Foundation of China, Jiangsu Provincial Science Fund for Distinguished Young Scholars, and Jiangsu Provincial Key Project of Science and Technology Plan.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2 , Vaccines, Inactivated
16.
Sci Total Environ ; 867: 161539, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36642268

ABSTRACT

Emerging contaminants, such as neonicotinoid pesticide acetamiprid (Ace), are frequently detected in the water environment, which can interact with existing heavy metal cadmium (Cd) to produce unpredicted influence. Limited studies have evaluated the effects of multiple pollutant exposures on aquatic animals. Here, we characterized the joint toxicity of Ace and Cd exposure to zebrafish (Danio rerio). The results revealed that Cd and its combined exposure with Ace had an inhibitory effect on the growth of larval zebrafish and induced morphological defects. Combined exposure to high doses of Ace and Cd could significantly reduce the levels of TG, glucose, and pyruvate in larval zebrafish. Untargeted metabolomics revealed that Cd treatment (285) produced more differentially expressed metabolites (DEMs) than Ace treatment (115), and combined treatment produced the most DEMs (294). The KEGG pathway enrichment analysis showed that they could disrupt riboflavin metabolism, amino acid metabolism, and glycolipid metabolism in the larvae of D. rerio. ELISA showed that VB2, FMN, and FAD levels were significantly increased. In addition, gene expression analysis exhibited that the mRNA levels of essential genes related to glycolipid metabolism were substantially affected, such as PK, PEPckc, PPAR-α, and FABP6. Furthermore, targeted amino acid metabolomics confirmed that both single exposure to Cd and combined exposure to Ace and Cd altered the levels of amino acids in larvae, including ALA, ARG, MET, PRO, TYR, VAL, GLY, ORN, and PHE. Taken together, exposure to Ace and Cd, alone or in combination, exerted harmful effects on the individual development, riboflavin metabolism, glycolipid metabolism, and amino acid metabolism disorder of D. rerio. These findings highlighted that more attention should be paid to the compound toxicity of chemical mixtures to aquatic organisms.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/metabolism , Cadmium/metabolism , Larva , Neonicotinoids/toxicity , Neonicotinoids/metabolism , Amino Acids/metabolism , Glycolipids/metabolism , Riboflavin , Water Pollutants, Chemical/metabolism
17.
Asia Pac J Clin Oncol ; 19(4): 458-467, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36101936

ABSTRACT

INTRODUCTION: The pivotal efficacy study assessed efficacy and safety of GSK's AS04-HPV-16/18 vaccine in Chinese women aged 18-25 years up to 6 years. The present extension study, performed 4 years later, offered AS04-HPV-16/18 vaccination to placebo recipients. Vaccine safety and its long-term protective effect were assessed at Year 10. METHODS: All 6051 women who received AS04-HPV-16/18 or the placebo during the initial study (NCT00779766) were invited to phase III/IV, open-label, partially controlled extension Year 10 study (NCT03629886). Placebo recipients were offered three-dose AS04-HPV-16/18 vaccination and followed up over 12 months to assess the safety. Cervical samples from all women were examined. Vaccine efficacy (VE) against incident infections and cytological lesions associated with HPV-16/18 and other oncogenic types was assessed as exploratory objective. RESULTS: Among 3537 women (out of 6051) enrolled in the extension study, 1791 women (mean age 32.7 years; standard deviation 1.8 years) received AS04-HPV-16/18 and reported no serious adverse events, potential immune-mediated diseases, or adverse pregnancy outcomes related to vaccination. Among 6051 women, VE against incident HPV-16, -18, and -16/18 infections up to Year 10 was 82.8% (95% confidence interval: 72.5-89.7), 79.8% (64.5-89.2), and 80.8% (72.4-87.0), respectively. VE against HPV-16/18 ASC-US+, CIN1+, and CIN2+ was 92.7% (82.2-97.7), 94.8% (67.4-99.9), and 90.5% (34.6-99.8), respectively. CONCLUSION: AS04-HPV-16/18 vaccine showed an acceptable safety profile in Chinese women vaccinated at age 26 years or above, and a long-term protection similar to other efficacy trials worldwide.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Adolescent , Adult , Female , Humans , Pregnancy , Young Adult , East Asian People , Follow-Up Studies , Human papillomavirus 16 , Human papillomavirus 18 , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/adverse effects , Papillomavirus Vaccines/therapeutic use , Uterine Cervical Neoplasms/prevention & control
18.
Foods ; 13(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38201058

ABSTRACT

Zizania latifolia (Z. latifolia) is a popular aquatic vegetable with various nutrients in south China, but little is known about its cultivars and growing seasons in terms of the nutritional components. This work aims to characterize the nutrients of five Z. latifolia cultivars in different growing seasons. The results showed that Z. latifolia samples differed in terms of chemical parameters, which were significantly affected by variety, growing season, and their interaction. Zhejiao No. 8, harvested in the autumn, stood out with the highest levels of vitamin C. Tangxiajiao and Zhejiao No. 1 contained the highest values of total soluble solids, reducing sugar, soluble proteins, and amino acids. Significant differences were observed between the autumn Z. latifolia and spring samples; the former were of higher quality than the latter based on hierarchical clustering analysis and principal component analysis. Moreover, total amino acids (TAA) and glutamic acid (GLU) were selected as the key indicators for Z. latifolia comprehensive quality by multiple linear regression analysis. This study provides essential information on Z. latifolia quality characteristics corresponding to cultivars and growing seasons, which lays the foundation for promoting the quality improvement of Z. latifolia scientifically.

19.
Foods ; 11(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36496634

ABSTRACT

As an ingredient in various foods, Chrysanthemum morifolium flower is popular due to its multiple health benefits. Pyrrolizidine alkaloids (PAs) are hepatotoxic secondary metabolites in Chrysanthemum family. Effects of high-pressure extraction (HPE) on PAs removal efficiency, as well as the retention efficiency of functional components, including chlorogenic acid, luteolin-7-ß-D-glucopyranoside, 3,5-dicaffeyl quinic acid and total flavonoids, were investigated and optimized using response surface methodology (RSM). Pressure (0.1-200 MPa), numbers of cycles (1-5) and acetic acid concentration (0-10%) were chosen as the independent variables. The results indicated that the pressure was the most significant factors affecting all responses. The optimum HPE for removing Pas and retaining functional components were set at 124 MPa, with one cycle and with an acetic acid concentration of 10%. After comparing the experimental optimum values and predicted optimum values, the validity of RSM model was proved.

20.
Sci Rep ; 12(1): 18522, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323754

ABSTRACT

Reductions in the quality and yield of crops continuously produced in the same location for many years due to annual increases in soil-borne pathogens. Environmentally-friendly methods are needed to produce vegetables sustainably and cost effectively under protective cover. We investigated the impact of biofertilizers on cucumber growth and yield, and changes to populations of soil microorganisms in response to biofertilizer treatments applied to substrate or soil. We observed that some biofertilizers significantly increased cucumber growth and decreased soil-borne pathogens in soil and substrate. Rhizosphere microbial communities in soil and substrate responded differently to different biofertilizers, which also led to significant differences in microbial diversity and taxonomic structure at different times in the growing season. Biofertilizers increase the prospects of re-using substrate for continuously producing high-quality crops cost-effectively from the same soil each year while at the same time controlling soil-borne disease.


Subject(s)
Cucumis sativus , Soil , Soil/chemistry , Cucumis sativus/microbiology , Soil Microbiology , Rhizosphere , Bacteria , Crops, Agricultural
SELECTION OF CITATIONS
SEARCH DETAIL
...