Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Sci Adv ; 10(23): eadk2693, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838155

ABSTRACT

T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.


Subject(s)
Cell Differentiation , Cell Lineage , Cell Plasticity , T-Box Domain Proteins , Th1 Cells , Th2 Cells , Th1 Cells/immunology , Th1 Cells/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Cell Lineage/genetics , Th2 Cells/immunology , Th2 Cells/metabolism , Mice , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Interferon-gamma/metabolism , Gene Expression Regulation , Cytokines/metabolism
2.
Dev Cell ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38723629

ABSTRACT

In mice, skin-resident type 2 innate lymphoid cells (ILC2s) exhibit some ILC3-like characteristics. However, the underlying mechanism remains elusive. Here, we observed lower expression of the ILC2 master regulator GATA3 specifically in cutaneous ILC2s (cILC2s) compared with canonical ILC2s, in line with its functionally divergent role in transcriptional control in cILC2s. Decreased levels of GATA3 enabled the expansion of RORγt fate-mapped (RORγtfm+) cILC2s after postnatal days, displaying certain similarities to ILC3s. Single-cell trajectory analysis showed a sequential promotion of the RORγtfm+ cILC2 divergency by RORγt and GATA3. Notably, during hair follicle recycling, these RORγtfm+ cILC2s accumulated around the hair follicle dermal papilla (DP) region to facilitate the process. Mechanistically, we found that GATA3-mediated integrin α3ß1 upregulation on RORγtfm+ cILC2s was required for their positioning around the DP. Overall, our study demonstrates a distinct regulatory role of GATA3 in cILC2s, particularly in promoting the divergence of RORγtfm+ cILC2s to facilitate hair follicle recycling.

3.
Immunity ; 57(5): 987-1004.e5, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38614090

ABSTRACT

The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.


Subject(s)
Cell Differentiation , Chromatin , Histone Code , Histones , Th2 Cells , Cell Differentiation/immunology , Animals , Chromatin/metabolism , Mice , Th2 Cells/immunology , Histones/metabolism , GATA3 Transcription Factor/metabolism , Gene Expression Regulation , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Locus Control Region , Cytokines/metabolism
4.
Immunity ; 57(5): 1019-1036.e9, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38677292

ABSTRACT

Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.


Subject(s)
Citrobacter rodentium , Enterobacteriaceae Infections , Glycolysis , Immunity, Innate , Lymphocytes , Mice, Knockout , Animals , Mice , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics , Hexokinase/metabolism , Hexokinase/genetics , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Interleukin-17/metabolism , Adaptation, Physiological/immunology
5.
Cell Host Microbe ; 32(2): 154-155, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38359797

ABSTRACT

Interactions between microbiota and host skin have an important impact on cutaneous immunity and inflammation. In this issue of Cell Host & Microbe, Cha et al. report that skin commensal bacteria-mediated priming of group 2 innate lymphoid cells in early life predisposes the mice to atopic dermatitis-like inflammation in adulthood.


Subject(s)
Dermatitis, Atopic , Mice , Animals , Immunity, Innate , Lymphocytes , Skin , Inflammation/metabolism
6.
Sci Immunol ; 8(89): eadi9066, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37948511

ABSTRACT

How CD4+ lineage gene expression is initiated in differentiating thymocytes remains poorly understood. Here, we show that the paralog transcription factors Zfp281 and Zfp148 control both this process and cytokine expression by T helper cell type 2 (TH2) effector cells. Genetic, single-cell, and spatial transcriptomic analyses showed that these factors promote the intrathymic CD4+ T cell differentiation of class II major histocompatibility complex (MHC II)-restricted thymocytes, including expression of the CD4+ lineage-committing factor Thpok. In peripheral T cells, Zfp281 and Zfp148 promoted chromatin opening at and expression of TH2 cytokine genes but not of the TH2 lineage-determining transcription factor Gata3. We found that Zfp281 interacts with Gata3 and is recruited to Gata3 genomic binding sites at loci encoding Thpok and TH2 cytokines. Thus, Zfp148 and Zfp281 collaborate with Gata3 to promote CD4+ T cell development and TH2 cell responses.


Subject(s)
CD4-Positive T-Lymphocytes , Transcription Factors , Animals , Mice , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cytokines/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Cell Rep ; 42(8): 112924, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37540600

ABSTRACT

Lymphoid tissue inducer (LTi) cells, a subset of innate lymphoid cells (ILCs), play an essential role in the formation of secondary lymphoid tissues. However, the regulation of the development and functions of this ILC subset is still elusive. In this study, we report that the transcription factor T cell factor 1 (TCF-1), just as GATA3, is indispensable for the development of non-LTi ILC subsets. While LTi cells are still present in TCF-1-deficient mice, the organogenesis of Peyer's patches (PPs), but not of lymph nodes, is impaired in these mice. LTi cells from different tissues have distinct gene expression patterns, and TCF-1 regulates the expression of lymphotoxin specifically in PP LTi cells. Mechanistically, TCF-1 may directly and/or indirectly regulate Lta, including through promoting the expression of GATA3. Thus, the TCF-1-GATA3 axis, which plays an important role during T cell development, also critically regulates the development of non-LTi cells and tissue-specific functions of LTi cells.


Subject(s)
Immunity, Innate , T Cell Transcription Factor 1 , Animals , Mice , Lymphocytes , Lymphoid Tissue/metabolism , T Cell Transcription Factor 1/metabolism
9.
Front Immunol ; 14: 1186580, 2023.
Article in English | MEDLINE | ID: mdl-37449212

ABSTRACT

T-bet-expressing Th17 (T-bet+RORγt+) cells are associated with the induction of pathology during experimental autoimmune encephalomyelitis (EAE) and the encephalitic nature of these Th17 cells can be explained by their ability to produce GM-CSF. However, the upstream regulatory mechanisms that control Csf2 (gene encoding GM-CSF) expression are still unclear. In this study, we found that Th17 cells dynamically expressed GATA3, the master transcription factor for Th2 cell differentiation, during their differentiation both in vitro and in vivo. Early deletion of Gata3 in three complimentary conditional knockout models by Cre-ERT2, hCd2 Cre and Tbx21 Cre, respectively, limited the pathogenicity of Th17 cells during EAE, which was correlated with a defect in generating pathogenic T-bet-expressing Th17 cells. These results indicate that early GATA3-dependent gene regulation is critically required to generate a de novo encephalitogenic Th17 response. Furthermore, a late deletion of Gata3 via Cre-ERT2 in the adoptive transfer EAE model resulted in a cell intrinsic failure to induce EAE symptoms which was correlated with a substantial reduction in GM-CSF production without affecting the generation and/or maintenance of T-bet-expressing Th17 cells. RNA-Seq analysis of Gata3-sufficient and Gata3-deficient CNS-infiltrating CD4+ effector T cells from mixed congenic co-transfer recipient mice revealed an important, cell-intrinsic, function of GATA3 in regulating the expression of Egr2, Bhlhe40, and Csf2. Thus, our data highlights a novel role for GATA3 in promoting and maintaining the pathogenicity of T-bet-expressing Th17 cells in EAE, via putative regulation of Egr2, Bhlhe40, and GM-CSF expression.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Granulocyte-Macrophage Colony-Stimulating Factor , Mice , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Th17 Cells , Virulence , Th2 Cells
10.
Nat Immunol ; 24(8): 1331-1344, 2023 08.
Article in English | MEDLINE | ID: mdl-37443284

ABSTRACT

CD4+ T helper 17 (TH17) cells protect barrier tissues but also trigger autoimmunity. The mechanisms behind these opposing processes remain unclear. Here, we found that the transcription factor EGR2 controlled the transcriptional program of pathogenic TH17 cells in the central nervous system (CNS) but not that of protective TH17 cells at barrier sites. EGR2 was significantly elevated in myelin-reactive CD4+ T cells from patients with multiple sclerosis and mice with autoimmune neuroinflammation. The EGR2 transcriptional program was intricately woven within the TH17 cell transcriptional regulatory network and showed high interconnectivity with core TH17 cell-specific transcription factors. Mechanistically, EGR2 enhanced TH17 cell differentiation and myeloid cell recruitment to the CNS by upregulating pathogenesis-associated genes and myelomonocytic chemokines. T cell-specific deletion of Egr2 attenuated neuroinflammation without compromising the host's ability to control infections. Our study shows that EGR2 regulates tissue-specific and disease-specific functions in pathogenic TH17 cells in the CNS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Mice , Cell Differentiation , Central Nervous System , Mice, Inbred C57BL , Neuroinflammatory Diseases , Th1 Cells , Th17 Cells , Transcription Factors , Virulence , Humans
11.
Immunity ; 56(5): 944-958.e6, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37040761

ABSTRACT

Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon-gamma , Animals , Interferon-gamma/genetics , Interferon-gamma/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Regulatory Sequences, Nucleic Acid , Homeostasis , Th1 Cells , Mammals
12.
Nat Immunol ; 24(6): 1036-1048, 2023 06.
Article in English | MEDLINE | ID: mdl-37106040

ABSTRACT

Allergic diseases are a major global health issue. Interleukin (IL)-9-producing helper T (TH9) cells promote allergic inflammation, yet TH9 cell effector functions are incompletely understood because their lineage instability makes them challenging to study. Here we found that resting TH9 cells produced IL-9 independently of T cell receptor (TCR) restimulation, due to STAT5- and STAT6-dependent bystander activation. This mechanism was seen in circulating cells from allergic patients and was restricted to recently activated cells. STAT5-dependent Il9/IL9 regulatory elements underwent remodeling over time, inactivating the locus. A broader 'allergic TH9' transcriptomic and epigenomic program was also unstable. In vivo, TH9 cells induced airway inflammation via TCR-independent, STAT-dependent mechanisms. In allergic patients, TH9 cell expansion was associated with responsiveness to JAK inhibitors. These findings suggest that TH9 cell instability is a negative checkpoint on bystander activation that breaks down in allergy and that JAK inhibitors should be considered for allergic patients with TH9 cell expansion.


Subject(s)
Hypersensitivity , Janus Kinase Inhibitors , Humans , Interleukin-9/genetics , T-Lymphocytes, Helper-Inducer , STAT5 Transcription Factor/genetics , Chromatin/genetics , Inflammation , Hypersensitivity/genetics , Cell Differentiation , STAT6 Transcription Factor
13.
Cell Rep ; 42(2): 112073, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36735533

ABSTRACT

Type 2 T helper (Th2) cells and group 2 innate lymphoid cells (ILC2s) provide protection against helminth infection and are involved in allergic responses. However, their relative importance and crosstalk during type 2 immune responses are still controversial. By generating and utilizing mouse strains that are deficient in either ILC2s or Th2 cells, we report that interleukin (IL)-33-mediated ILC2 activation promotes the Th2 cell response to papain; however, the Th2 cell response to ovalbumin (OVA)/alum immunization is thymic stromal lymphopoietin (TSLP) dependent but independent of ILC2s. During helminth infection, ILC2s and Th2 cells collaborate at different phases of the immune responses. Th2 cells, mainly through IL-4 production, induce the expression of IL-25, IL-33, and TSLP, among which IL-25 and IL-33 redundantly promote ILC2 expansion. Thus, while Th2 cell differentiation can occur independently of ILC2s, activation of ILC2s may promote Th2 responses, and Th2 cells can expand ILC2s by inducing type 2 alarmins.


Subject(s)
Immunity, Innate , Interleukin-33 , Animals , Mice , Th2 Cells , Lymphocytes/metabolism , Cytokines/metabolism , Thymic Stromal Lymphopoietin
14.
J Ethnopharmacol ; 308: 116261, 2023 May 23.
Article in English | MEDLINE | ID: mdl-36787846

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pleurospermum lindleyanum (Lipsky) B. Fedtsch is a perennial herb classified in the Apiaceae family, genus Pleurospermum, chiefly native to the Taxkorgan County, Xinjiang, China. In the Xinjiang Province, it is a well-known ethnic traditional herb, often addressed by its tribal name, Kurumuti. It grows in harsh conditions over 4000 m above sea level, such as the Pamirs plateau. It is rich in flavonoids, coumarins, terpenoids, essential oil, substances that have been widely applied in the prevention and treatment of hypertension, diabetes, coronary heart disease, and cerebral thrombosis by local Tajik residents. AIMS OF THE STUDY: The present study aimed to evaluate the antihypertensive effects of the Pleurospermum Lindleyanum aqueous extract (PLAE) in spontaneously hypertensive rats (SHRs). MATERIALS AND METHODS: The Pleurospermum lindleyanum was collected from the Taxkorgan Tajik Autonomous County, Xinjiang, China. The main chemical composition of PLAE was identified using the ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). SHRs were treated by gavage with PLAE (equivalent to Pleurospermum lindleyanum 5 or 10 g/kg/day) for 6 weeks, using Captopril (10 mg/kg/day) as positive control. The systolic blood pressure (SBP), renal and cardiac morphology, plasma levels of angiotensin-converting enzyme (ACE), aldosterone (ALD), angiotensinⅡ (AngⅡ), superoxide dismutase (SOD), endothelin-1 (ET-1) and nitric oxide (NO) were measured. RESULTS: A total of 30 compounds were identified in PLAE. PLAE significantly attenuated the SBP of SHRs. The effects began after 3 weeks of administration and then became steady and long-lasting. Its potential mechanisms may be associated with the protective effects on renal and cardiac injury caused by hypertension, the decrease of plasma vasoconstrictors, such as ACE, ALD, AngⅡ, and ET-1 levels, the maintenance of NO/ET balance, the increase in plasma NO levels and SOD activity, thereby reducing oxidative stress. CONCLUSION: Pleurospermum lindleyanum can be suggested as a novel antihypertensive ethnic traditional herb, which lays the foundation for researching safe and effective antihypertensive herbal medicines.


Subject(s)
Antihypertensive Agents , Hypertension , Rats , Animals , Antihypertensive Agents/pharmacology , Rats, Inbred SHR , Hypertension/drug therapy , Captopril/pharmacology , Blood Pressure , Endothelin-1 , Superoxide Dismutase
15.
Cell Mol Immunol ; 20(4): 404-418, 2023 04.
Article in English | MEDLINE | ID: mdl-36823235

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are a category of heterogeneous cells that produce the cytokines IL-5 and IL-13, which mediate the type 2 immune response. However, specific drug targets on lung ILC2s have rarely been reported. Previous studies have shown that type 2 cytokines, such as IL-5 and IL-13, are related to depression. Here, we demonstrated the negative correlation between the depression-associated monoamine neurotransmitter serotonin and secretion of the cytokines IL-5 and IL-13 by ILC2s in individuals with depression. Interestingly, serotonin ameliorates papain-induced lung inflammation by suppressing ILC2 activation. Our data showed that the serotonin receptor HTR2A was highly expressed on ILC2s from mouse lungs and human PBMCs. Furthermore, an HTR2A selective agonist (DOI) impaired ILC2 activation and alleviated the type 2 immune response in vivo and in vitro. Mice with ILC2-specific depletion of HTR2A (Il5cre/+·Htr2aflox/flox mice) abolished the DOI-mediated inhibition of ILC2s in a papain-induced mouse model of inflammation. In conclusion, serotonin and DOI could restrict the type 2 lung immune response, indicating a potential treatment strategy for type 2 lung inflammation by targeting HTR2A on ST2+ ILC2s.


Subject(s)
Immunity, Innate , Pneumonia , Humans , Animals , Mice , Papain , Interleukin-13 , Interleukin-5 , Serotonin , Lymphocytes , Pneumonia/chemically induced , Lung , Cytokines , Interleukin-33
16.
Front Immunol ; 14: 1335326, 2023.
Article in English | MEDLINE | ID: mdl-38283350

ABSTRACT

Therapies for bladder cancer patients are limited by side effects and failures, highlighting the need for novel targets to improve disease management. Given the emerging evidence highlighting the key role of innate lymphoid cell subsets, especially type 2 innate lymphoid cells (ILC2s), in shaping the tumor microenvironment and immune responses, we investigated the contribution of ILC2s in bladder tumor development. Using the orthotopic murine MB49 bladder tumor model, we found a strong enrichment of ILC2s in the bladder under steady-state conditions, comparable to that in the lung. However, as tumors grew, we observed an increase in ILC1s but no changes in ILC2s. Targeting ILC2s by blocking IL-4/IL-13 signaling pathways, IL-5, or IL-33 receptor, or using IL-33-deficient or ILC2-deficient mice, did not affect mice survival following bladder tumor implantation. Overall, these results suggest that ILC2s do not contribute significantly to bladder tumor development, yet further investigations are required to confirm these results in bladder cancer patients.


Subject(s)
Immunity, Innate , Urinary Bladder Neoplasms , Humans , Animals , Mice , Interleukin-33/metabolism , Lymphocytes , Lung , Urinary Bladder Neoplasms/pathology , Tumor Microenvironment
17.
Front Immunol ; 13: 975958, 2022.
Article in English | MEDLINE | ID: mdl-36466899

ABSTRACT

T helper-2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) play crucial roles during type 2 immune responses; the transcription factor GATA3 is essential for the differentiation and functions of these cell types. It has been demonstrated that GATA3 is critical for maintaining Th2 and ILC2 phenotype in vitro; GATA3 not only positively regulates type 2 lymphocyte-associated genes, it also negatively regulates many genes associated with other lineages. However, such functions cannot be easily verified in vivo because the expression of the markers for identifying Th2 and ILC2s depends on GATA3. Thus, whether Th2 cells and ILC2s disappear after Gata3 deletion or these Gata3-deleted "Th2 cells" or "ILC2s" acquire an alternative lineage fate is unknown. In this study, we generated novel GATA3 reporter mouse strains carrying the Gata3 ZsG or Gata3 ZsG-fl allele. This was achieved by inserting a ZsGreen-T2A cassette at the translation initiation site of either the wild type Gata3 allele or the modified Gata3 allele which carries two loxP sites flanking the exon 4. ZsGreen faithfully reflected the endogenous GATA3 protein expression in Th2 cells and ILC2s both in vitro and in vivo. These reporter mice also allowed us to visualize Th2 cells and ILC2s in vivo. An inducible Gata3 deletion system was created by crossing Gata3 ZsG-fl/fl mice with a tamoxifen-inducible Cre. Continuous expression of ZsGreen even after the Gata3 exon 4 deletion was noted, which allows us to isolate and monitor GATA3-deficient "Th2" cells and "ILC2s" during in vivo immune responses. Our results not only indicated that functional GATA3 is dispensable for regulating its own expression in mature type 2 lymphocytes, but also revealed that GATA3-deficient "ILC2s" might be much more stable in vivo than in vitro. Overall, the generation of these novel GATA3 reporters will provide valuable research tools to the scientific community in investigating type 2 immune responses in vivo.


Subject(s)
GATA3 Transcription Factor , Immunity, Innate , Mice , Animals , Alleles , GATA3 Transcription Factor/genetics , Lymphocytes , Th2 Cells
18.
J Immunol ; 209(7): 1237-1242, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36165199

ABSTRACT

IL-9, produced mainly by specialized T cells, mast cells, and group 2 innate lymphoid cells, regulates immune responses, including anti-helminth and allergic responses. Polarization of naive CD4 T cells into IL-9-producing T cells (Th9s) is induced by IL-4 and TGF-ß1 or IL-1ß. In this article, we report that the transcription factor growth factor-independent 1 transcriptional repressor (GFI1) plays a negative role in mouse Th9 polarization. Moreover, the expression of GFI1 is controlled by liganded RARα, allowing GFI1 to mediate the negative effect of retinoic acid on IL-9 expression. The Gfi1 gene has multiple RARα binding sites in the promoter region for recruiting nuclear coactivator steroid receptor coactivator-3 and p300 for histone epigenetic modifications in a retinoic acid-dependent manner. Retinoic acid-induced GFI1 binds the Il9 gene and suppresses its expression. Thus, GFI1 is a novel negative regulator of Il9 gene expression. The negative GFI1 pathway for IL-9 regulation provides a potential control point for Th9 activity.


Subject(s)
Interleukin-9 , Receptors, Steroid , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histones/metabolism , Immunity, Innate , Interleukin-4/metabolism , Lymphocytes/metabolism , Mice , Receptors, Steroid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta1/metabolism , Tretinoin/metabolism
19.
J Food Biochem ; 46(12): e14404, 2022 12.
Article in English | MEDLINE | ID: mdl-36125852

ABSTRACT

Citric acid is a crucial organic in our daily life. The effect and mechanism of citric acid on glucose metabolism disorder induced by hyperlipidemia were explored by hyperlipidemic rat models which were established and treated with Xuezhikang and citric acid for 40 days. The results showed that citric acid significantly decreased liver index and reduced levels of triglyceride, total cholesterol and low-density lipoprotein cholesterol, while increasing high-density lipoprotein cholesterol. And citric acid observably decreased blood glucose and insulin resistance index, as well as increasing insulin sensitivity. Meanwhile, citric acid dramatically down-regulated mRNA and protein expression levels of glucose-6-phosphatase (G-6-Pase) (p < .01) and up-regulated those of glucose transporter 4 (GLUT-4) (p < .01). And significantly increased the contents of acetic, propionic and butyric acids (p < .01). These findings suggest that citric acid can regulate blood lipid levels in hyperlipidemic rats, reduce the resistance induced by hyperlipidemia, and improve insulin sensitivity. PRACTICAL APPLICATIONS: These findings suggest that citric acid can regulate blood lipid levels in hyperlipidemic rats, reduce the resistance induced by hyperlipidemia, and improve insulin sensitivity. and provide a theoretical basis for the application of citric acid in diseases related to glucose metabolism disorders.


Subject(s)
Hyperlipidemias , Insulin Resistance , Rats , Animals , Hyperlipidemias/drug therapy , Hyperlipidemias/etiology , Hyperlipidemias/metabolism , Rats, Sprague-Dawley , Lipids , Cholesterol
20.
Front Plant Sci ; 13: 935025, 2022.
Article in English | MEDLINE | ID: mdl-35812907

ABSTRACT

Tamarix chinensis and Ziziphus jujuba are two dominant shrub species on Chenier Island in the Yellow River Delta, China. Water is a restrictive factor determining the plant growth, vegetation composition, and community succession in this coastal zone. We investigated how water uptake tradeoffs of the two shrub species responded to soil water fluctuations caused by seasonal variations of precipitation. The soil water content, salinity and δ18O values of potential water sources (soil water in 0-20, 20-40, 40-60, and 60-100 cm soil layers, and groundwater) and plant xylem water were measured in wet (July 2013) and dry (July 2014) seasons. The IsoSource model was employed to calculate the contributions of different water sources to plant xylem water. The results showed that δ18O values of soil water decreased significantly with soil depth in the dry season, while increased significantly with soil depth in the wet season. In the wet season, when the soil water was abundant, Z. jujuba mostly used the soil water from the 60-100 cm layer, while T. chinensis took up a mixture of groundwater and soil water from the 60-100 cm layer. In the dry season, when the soil water was depleted because of low precipitation, Z. jujuba mainly took up a mixture of the soil water from 20 to 100 cm soil layers, while T. chinensis mainly used groundwater. T. chinensis and Z. jujuba showed different ecological amplitudes of water sources during dry and wet seasons. The niche differentiation of major water sources for T. chinensis and Z. jujuba demonstrated their adaptabilities to the fluctuations of soil moisture in water-limited ecosystems. Water niche differentiations of coexisting shrub species were expected to minimize their competition for limited water sources, contributing to successful coexistence and increasing the resilience of the coastal wetland ecosystem to drought.

SELECTION OF CITATIONS
SEARCH DETAIL
...