Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(23): 28193-28203, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37252837

ABSTRACT

Multifunctional phosphors have significant application and scientific value and are becoming a research hotspot in the field of luminescent materials. Herein, we report Mn4+-activated double-perovskite-type Sr2LuNbO6 multifunctional phosphors with excellent comprehensive properties in the fields of optical temperature/pressure sensing and w-LED lighting. The crystalline structure, elemental composition, optimal doping concentration, crystal-field strength, and optical bandgap of the phosphors are investigated in detail, and the mechanisms of concentration and thermal quenching are discussed. From the optimal Sr2LuNb0.998O6:0.2%Mn4+ phosphor, a LED lamp for indoor warm-white lighting is successfully fabricated. Further, the thermometric properties of the phosphors are explored for applications as FIR- and lifetime-based thermometers, showing a maximum relative sensitivity of 1.55% K-1 at 519 K. Upon pressure loading, a significant red-shift of the peak centroid is observed, and the pressure sensitivity is determined to be 0.82 nm/GPa. These results suggest that the Mn4+-activated Sr2LuNbO6 multifunctional phosphors have great potential to be utilized in the fields of optical thermometry, manometry, and lighting.

2.
IEEE Trans Neural Netw Learn Syst ; 34(12): 9625-9642, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35617185

ABSTRACT

Distributed machine learning (ML) was originally introduced to solve a complex ML problem in a parallel way for more efficient usage of computation resources. In recent years, such learning has been extended to satisfy other objectives, namely, performing learning in situ on the training data at multiple locations and keeping the training datasets private while still allowing sharing of the model. However, these objectives have led to considerable research on the vulnerabilities of distributed learning both in terms of privacy concerns of the training data and the robustness of the learned overall model due to bad or maliciously crafted training data. This article provides a comprehensive survey of various privacy, security, and robustness issues in distributed ML.

3.
Polymers (Basel) ; 14(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36501534

ABSTRACT

In the past decade, nanostructured polypyrrole (PPy) has been widely studied because of its many specific properties, which have obvious advantages over bulk-structured PPy. This review outlines the main structures, preparation methods, physicochemical properties, potential applications, and future prospects of PPy nanomaterials. The preparation approaches include the soft micellar template method, hard physical template method and templateless method. Due to their excellent electrical conductivity, biocompatibility, environmental stability and reversible redox properties, PPy nanomaterials have potential applications in the fields of energy storage, biomedicine, sensors, adsorption and impurity removal, electromagnetic shielding, and corrosion resistant. Finally, the current difficulties and future opportunities in this research area are discussed.

4.
Materials (Basel) ; 11(11)2018 Nov 17.
Article in English | MEDLINE | ID: mdl-30453610

ABSTRACT

Zinc is widely used in battery negative electrodes and steel coatings for automotive industries. The anti-corrosion property of zinc is the most important factor determining the performance and lifetime of the products. In this paper, both size-controlled poly N-(vinyl)pyrrole (PNVPY) nanoparticles and carbon black (CB) nanoparticles were compounded with poly (vinyl butyral) (PVB) binder developing a series of composite coatings covered on the zinc substrates using a spin-coating technique. The morphologies of the surface and cross section of the PNVPY/CB/PVB coatings indicate that the PNVPY and CB nanoparticles are uniformly distributed in the matrix. The corrosion resistance of the composite coatings was tested by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization in a 3.5% NaCl solution. It is found that the coating with 1.9 wt.% PNVPY and 2.3 wt.% CB nanoparticles shows a remarkably high resistance value (Rc) and corrosion protection efficiency (99.99%). Meanwhile, the immersion results also reveal its superior corrosion resistance. It is considered that the nanoscale dispersion of PNVPY and carbon in PVB matrix and the strong interface action between the nanoparticles and PVB result in the uniform microstructure of the composites which endues the superior corrosion properties of the coatings.

5.
Mycobiology ; 46(2): 85-91, 2018.
Article in English | MEDLINE | ID: mdl-29963309

ABSTRACT

Endophytic fungi strains (n = 81) were isolated from the leaves, barks, and fruits of Camellia oleifera from Hunan province (China) to delineate their species composition and potential as biological control agents of C. oleifera anthracnose. The fungi were identified by morphological and phylogenetic analyses. Fungal colonization rates of the leaves, barks, and fruits were 58.02, 27.16, and 14.81%, respectively. The isolates were identified as 14 genera, belonging to two subdivisions, Deuteromycotina and Ascomycotina; 87.65% of all isolates belonged to Deuteromycotina. The dominant species, occurring with a high relative frequency, were Pestalotiopsis sp. (14.81%), Penicillium sp. (14.81%), and Fusarium sp. (12.35%). The Simpson's and Shannon's diversity indices revealed the highest species diversity in the leaves, followed by the barks and fruits. The similarity index for the leaves versus barks comparison was the highest, indicating that the number of endophytic fungal species shared by the leaves and barks was higher than barks and fruits or leaves and fruits. Based on the results of dual culture experiments, only five strains exhibited antifungal activity against C. oleifera anthracnose pathogen, with isolate ty-64 (Oidium sp.) generating the broadest inhibition zones. Our results indicate that the endophytes associated with C. oleifera could be employed as natural agents controlling C. oleifera anthracnose.

6.
J Colloid Interface Sci ; 473: 44-51, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27046772

ABSTRACT

Multi-hollow particles have drawn extensive research interest due to their high specific areas and abundant inner voids, whereas their convenient synthesis still remains challenging. In this paper, we report a simple and convenient method based on seeded swelling polymerization to prepare the multi-hollow microspheres with enclosed surfaces and compartmentalized voids using monodisperse poly (styrene-co-sodium 4-vinylbenzenesulfonate) microspheres as seed particles. A formation mechanism of the multi-hollow structure was proposed involving the processes of water absorption, coalescence and stabilization of water domains, immobilization of multi-hollow structure, and coverage of surface dimples. The influencing parameters on the morphology of the microspheres, including weight ratio of sodium 4-vinylbenzenesulfonate to styrene in the seed particles, dosage of the swelling monomer and the crosslinking agent were systematically investigated. The internal structure of the resultant microspheres could be tuned from solid to multi-hollow by controlling over these parameters. Multi-hollow microspheres with compartmentalized chambers, smooth surfaces and narrow size distributions were obtained as a result.

SELECTION OF CITATIONS
SEARCH DETAIL
...