Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 512: 775-783, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29112928

ABSTRACT

How to design and develop ceria supported metal nanoparticles (M/CeO2) catalysts with high performance and sintering resistance is a great challenge in heterogeneous catalysis and surface science. In the present work, we propose two ways to improve the anti-sintering capability of M/CeO2 catalysts. One is to introduce Ti atom on CeO2 (1 1 1) to form monatomically dispersed Ti, TiOx or TiO2-like species on ceria. Density functional theory calculations show that the much stronger interactions between Au and Ti modified CeO2 (1 1 1) occur compared with that on CeO2 (1 1 1). According to the electronic analysis, the strong interactions are attributed to the electron transfer from the Ti modified ceria substrate to Au. The other is to dope Ti into CeO2 (1 1 1) to form TixCe1-xO2. This also leads to the interaction enhancement between Au and TixCe1-xO2 (1 1 1). Electronic analysis indicates that the charge protuberance of surface O atoms near Ti atom results in the strong interactions between metal and ceria. This work provides new ideas for preparing M/CeO2 catalysts with high dispersity and stability, and sheds light into the theoretical design of catalysts.

2.
Phys Chem Chem Phys ; 18(47): 32494-32502, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27869271

ABSTRACT

The effects of strong interactions between Ti and ceria on the structures of Ti/CeO2(111) are systematically investigated by density functional theory calculation. To our best knowledge, the adsorption energy of a Ti atom at the hollow site of CeO2 is the highest value (-7.99 eV) reported in the literature compared with those of Au (-0.88--1.26 eV), Ag (-1.42 eV), Cu (-2.69 eV), Pd (-1.75 eV), Pt (-2.62 eV) and Sn (-3.68 eV). It is very interesting to find that Ti adatoms disperse at the hollow site of CeO2(111) to form surface TiOx species, instead of aggregating to form Ti metal clusters for the Ti-CeO2 interactions that are much stronger than those of Ti-Ti ones. Ti adatoms are completely oxidized to Ti4+ ions if they are monatomically dispersed on the next near hollow sites of CeO2(111) (xTi-NN-hollow); while Ti3+ ions are observed when they locate at the near hollow sites (xTi-N-hollow). Due to the electronic repulsive effects among Ti3+ ions, the adsorption energies of xTi-N-hollow are slightly weaker than those of xTi-NN-hollow. Simultaneously, the existence of unstable Ti3+ ions on xTi-N-hollow also leads to the restructuring of xTi-N-hollow by surface O atoms of ceria transferring to the top of Ti3+ ions, or oxidation by O2 adsorption and dissociation. Both processes improve the stability of the xTi/CeO2 system by Ti3+ oxidation. Correspondingly, surface TiO2-like species form. This work sheds light into the structures of metal/CeO2 catalysts with strong interactions between the metal and the ceria support.

SELECTION OF CITATIONS
SEARCH DETAIL
...