Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Biomater Sci Polym Ed ; 35(8): 1157-1176, 2024 06.
Article in English | MEDLINE | ID: mdl-38386369

ABSTRACT

Nitric oxide (NO) plays an important role as a signalling molecule in the biological system. Organoselenium-coated or grafted biomaterials have the potential to achieve controlled NO release as they can catalyse decomposition of endogenous S-nitrosothiols to NO. However, such biomaterials are often challenged by the loss of the catalytic sites, which can affect the stability in tissue repair applications. In this work, we prepare a diselenide-containing poly(ester urethane)urea (SePEUU) polymer with Se-Se in the backbone, which is further electrospun into fibrous membranes by blending with poly(ester urethane)urea (PEUU) without diselenide bonds. The presence of catalytic sites in the main chain demonstrates stable and long-lasting NO catalytic activity, while the porous structure of the fibrous membranes ensures uniform distribution of the catalytic sites and better contact with the donor-containing solution. PEUU/SePEUU50 in 50/50 mass ratio has a physiologically adapted rate of NO release, with a sustained generation of NO after exposure to PBS at 37 °C for 30 d. PEUU/SePEUU50 has a low hemolysis and protein adsorption, with mechanical properties in the wet state matching those of natural vascular tissues. It can promote the adhesion and proliferation of human umbilical vein endothelial cells in vitro and control the proliferation of vascular smooth muscle cells in the presence of NO generation. This study exhibits the electrospun fibrous membranes have potential for utilizing as hemocompatible biomaterials for regeneration of blood-contacting tissues.


Subject(s)
Biocompatible Materials , Nitric Oxide , Polyesters , Polyurethanes , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Humans , Polyurethanes/chemistry , Polyesters/chemistry , Catalysis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Human Umbilical Vein Endothelial Cells , Hemolysis/drug effects , Membranes, Artificial , Cell Proliferation/drug effects , Adsorption
2.
Adv Healthc Mater ; 12(10): e2202516, 2023 04.
Article in English | MEDLINE | ID: mdl-36548128

ABSTRACT

Intracellular delivery of freezing-tolerant trehalose is crucial for cryopreservation of red blood cells (RBCs) and previous strategies based on membrane-disruptive activity usually generate severe hemolysis. Herein, a dynamic membrane-active glycopeptide is developed by grafting with 25% maltotriose and 50% p-benzyl alcohol for the first time to effectively facilitate entry of membrane-impermeable trehalose in human RBCs with low hemolysis. Results of the mechanism acting on cell membranes suggest that reversible adsorption of such benzyl alcohol-grafted glycopeptide on cell surfaces upon weak perturbation with phospholipids and dynamic transition toward membrane stabilization are essential for keeping cellular biofunctions. Furthermore, the functionalized glycopeptide is indicative of typical α-helical/ß-sheet structure-driven regulations of ice crystals during freeze-thaw, thereby strongly promoting efficient cryopreservation. Such all-in-one glycopeptide enables achieving both high cell recovery post-thaw >85% and exceptional cryosurvival >95% in direct freezing protocols. The rationally designed benzyl alcohol-modified glycopeptide permits the development of a competent platform with high generality for protection of blood cells against freeze-stress.


Subject(s)
Cryoprotective Agents , Hemolysis , Humans , Freezing , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Cryoprotective Agents/metabolism , Trehalose/metabolism , Glycopeptides/pharmacology , Glycopeptides/metabolism , Blood Preservation/methods , Erythrocytes , Cryopreservation/methods , Benzyl Alcohol/metabolism
3.
ACS Biomater Sci Eng ; 9(1): 498-507, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36577138

ABSTRACT

Cryopreservation of red blood cells (RBCs) is imperative for transfusion therapy, while cryoprotectants are essential to protect RBCs from cryoinjury under freezing temperatures. Trehalose has been considered as a biocompatible cryoprotectant that naturally accumulates in organisms to tolerate anhydrobiosis and cryobiosis. Herein, we report a feasible protocol that enables glycerol-free cryopreservation of human RBCs by integration of the synthesized trehalose lipids and dissociative trehalose through ice tuning and membrane stabilization. Typically, in comparison with sucrose monolaurate or trehalose only, trehalose monolaurate was able to protect cell membranes against freeze stress, achieving 96.9 ± 2.0% cryosurvival after incubation and cryopreservation of human RBCs with 0.8 M trehalose. Moreover, there were slight changes in cell morphology and cell functions. It was further confirmed by isothermal titration calorimetry and osmotic fragility tests that the moderate membrane-binding activity of trehalose lipids exerted cell stabilization for high cryosurvival. The aforementioned study is likely to provide an alternative way for glycerol-free cryopreservation of human RBCs and other types of cells.


Subject(s)
Erythrocytes , Trehalose , Humans , Trehalose/pharmacology , Trehalose/metabolism , Erythrocytes/metabolism , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Cryoprotective Agents/metabolism , Glycerol/pharmacology , Glycerol/metabolism , Lipids/pharmacology
4.
ACS Macro Lett ; 11(11): 1278-1284, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36282126

ABSTRACT

Protection of proteins is of great significance since external stimuli can cause denaturation due to aggregation. Herein, a series of well-defined cationic trehalose-glycopolypeptides, poly(ethylene glycol)-b-(l-methionine-g-trehalose)s (PEG45-b-(Met-g-Tre)x), were synthesized for stabilization of a model protein, glucose oxidase (GOx), against lyophilization and heating. The isothermal titration calorimetry results revealed that polyionic complexes (PICs) were formed between the synthesized trehalose-glycopolypeptides and GOx via electrostatic interactions. These PICs allowed GOx to maintain an approximately 80% enzymatic activity compared with native GOx after 6× lyophilization. Meanwhile, PEG45-b-(Met-g-Tre)x also provided a positive effect on the protection of GOx upon heating at 60 °C. Results of transmission electron microscopy suggested that the trehalose-glycopolypeptides could prevent protein aggregation, thereby maintaining the bioactive function of GOx. In brief, it provided a synthesis strategy for the precise preparation of trehalose-glycopolypeptides, as well as a suitable method for stabilization of proteins.


Subject(s)
Glucose Oxidase , Trehalose , Trehalose/chemistry , Glucose Oxidase/chemistry , Freeze Drying , Calorimetry
5.
J Mater Chem B ; 10(31): 6038-6048, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35894777

ABSTRACT

As a nonreducing disaccharide, trehalose can be used as a biocompatible cryoprotectant for solvent-free cell cryopreservation, but the membrane-impermeability limits its cryoprotective efficiency. Herein, a series of aromatic monoamines with a 1-4 methylene spacer were grafted onto γ-poly(glutamic acid) (γ-PGA) for promoting intracellular trehalose uptake in human red blood cells (hRBCs) via membrane perturbation. The self-assembled nanoparticles of the obtained amphiphilic γ-PGA could be adsorbed on the cell membrane by the hydrophobic interaction to disturb the lipid arrangement and increase the membrane permeability of trehalose under hypertonic conditions. Results suggested that the intracellular trehalose could be enhanced progressively with the methylene spacer length, significantly increasing to 75.1 ± 0.7 mM by incubating hRBCs in 0.8 M trehalose containing phenylbutylamine-grafted γ-PGA at 4 °C for 24 h. Meanwhile, the other three polymers exhibited membrane stabilization in addition to improved intracellular trehalose, maintaining the membrane integrity during cryopreservation to achieve high cryosurvival. Molecular dynamics simulation further confirmed that defects could be formed by interaction of the above four amphiphilic polymers on the modeled phospholipid bilayer. It was believed that glycerol-free cryopreservation of human cells could be realized by using trehalose as the biocompatible cryoprotectant, and membrane stabilization can be a compensatory approach to membrane perturbation during impermeable biomolecule delivery.


Subject(s)
Cryopreservation , Trehalose , Cell Survival , Cryopreservation/methods , Cryoprotective Agents/chemistry , Cryoprotective Agents/metabolism , Cryoprotective Agents/pharmacology , Erythrocytes/metabolism , Humans , Intracellular Space , Polyglutamic Acid/analogs & derivatives , Polymers/metabolism , Trehalose/chemistry
6.
J Mater Chem B ; 10(23): 4452-4462, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35604178

ABSTRACT

Cryopreservation of human erythrocytes via suitable cryoprotectants is essential for transfusion during emergencies, but the conventional glycerolization method requires a tedious thawing-deglycerolization process. Alternatively, trehalose, a nonreducing disaccharide, has gained much attention as a biocompatible cryoprotectant due to its nature in living organisms capable of surviving extreme cold and desiccation. In this work, cryopreservation of human erythrocytes was realized through high intracellular trehalose enhanced by benzyl alcohol at 4 °C with membrane stabilization of maltotriose-grafted ε-poly(L-lysine). Intracellular trehalose could reach 94.2 ± 12.1 mM with slight impacts on morphology and cell functions, and the post-storage cryosurvival of human erythrocytes could achieve 96.2 ± 3.4% via membrane protection by the glycopeptide. It has been demonstrated that the functional glycopeptide performed as an extracellular cryoprotectant accompanied by high intracellular trehalose for synergistic cryopreservation of human erythrocytes in the biocompatible glycerol-free conditions. This two-step approach involving augmentation of intracellular trehalose at a hypothermic temperature and membrane stabilization of the functional glycopeptide could be an alternative way for human cell cryopreservation.


Subject(s)
Polylysine , Trehalose , Cryopreservation/methods , Cryoprotective Agents/chemistry , Cryoprotective Agents/metabolism , Cryoprotective Agents/pharmacology , Erythrocytes , Glycopeptides/metabolism , Humans , Polylysine/metabolism , Polylysine/pharmacology , Trehalose/chemistry , Trisaccharides
7.
J Mater Chem B ; 10(7): 1042-1054, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35080234

ABSTRACT

Currently, glycerol is a conventional cryoprotectant of human red blood cells (hRBCs), but the time-consuming thawing and deglycerolization processes are essential before transfusion. Much of the research up to now has been conducted on the delivery of impermeable trehalose to hRBCs at 37 °C, but the cryoprotective effect of trehalose and deterioration of cells still remain challenging. Encouraged by the interaction of hydrophobic or cationic groups on cell membranes and osmotic stabilization, herein, we propose a novel cryopreservation system to facilitate trehalose entry into hRBCs at 4 °C and pH 7.4. High intracellular trehalose contents and cryosurvival of hRBCs were achieved with small function variations via the assistance of self-assembled nanoparticles of alkylated ε-poly(L-lysine) (ε-PL) along with poly(vinyl pyrrolidone) (PVP). The effect of amphipathic alkylated ε-PL with various alkyl chains and grafting ratios on membrane perturbation with protection of PVP was systematically investigated. Overall, by the combination of alkylated ε-PL and PVP, the intracellular trehalose could be enhanced to 109.7 ± 6.1 mM and subsequently hRBC cryosurvival reached 91.7 ± 5.5%, significantly higher than those containing trehalose only, 11.9 ± 1.1 mM and 50.0 ± 2.1%, respectively. It was observed that the biocompatible trehalose-loading system could benefit glycerol-free cryopreservation of hRBCs and also provide a feasible way for impermeable biomacromolecule delivery.


Subject(s)
Glycerol , Trehalose , Cryopreservation , Cryoprotective Agents/chemistry , Cryoprotective Agents/metabolism , Cryoprotective Agents/pharmacology , Erythrocytes , Glycerol/metabolism , Humans , Polylysine/metabolism , Trehalose/chemistry
8.
Biomacromolecules ; 23(2): 530-542, 2022 02 14.
Article in English | MEDLINE | ID: mdl-34965723

ABSTRACT

Ice formation and recrystallization exert severe impairments to cellular cryopreservation. In light of cell-damaging washing procedures in the current glycerol approach, many researches have been devoted to the development of biocompatible cryoprotectants for optimal bioprotection of human erythrocytes. Herein, we develop a novel ACTIVE glycopeptide of saccharide-grafted ε-poly(L-lysine), that can be credited with adsorption on membrane surfaces, cryopreservation with trehalose, and icephilicity for validity of human erythrocytes. Then, by Borch reductive amination or amidation, glucose, lactose, maltose, maltotriose, or trehalose was tethered to ε-polylysine. The synthesized ACTIVE glycopeptides with intrinsic icephilicity could localize on the membrane surface of human erythrocytes and improve cryopreservation with trehalose, so that remarkable post-thaw cryosurvival of human erythrocytes was achieved with a slight variation in cell morphology and functions. Human erythrocytes (∼50% hematocrit) in cryostores could maintain high cryosurvival above 74%, even after plunged in liquid nitrogen for 6 months. Analyses of differential scanning calorimetry, Raman spectroscopy, and dynamic ice shaping suggested that this cryopreservation protocol combined with the ACTIVE glycopeptide and trehalose could enhance the hydrogen bond network in nonfrozen solutions, resulting in inhibition of recrystallization and growth of ice. Therefore, the ACTIVE glycopeptide can be applied as a trehalose-associated "chaperone", providing a new way to serve as a candidate in glycerol-free human erythrocyte cryopreservation.


Subject(s)
Ice , Trehalose , Cell Survival , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Erythrocytes , Glycerol/pharmacology , Glycopeptides/pharmacology , Humans , Trehalose/pharmacology
9.
Org Lett ; 23(6): 2205-2211, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33635677

ABSTRACT

The reactivity of N-difluoromethylpyridinium salts is seldom explored because of their instability and low availability. Here we present a novel nucleophilic addition of N-difluoromethylpyridinium salts with nitroalkanes to synthesize N-CF2H-dihydropyridines and N-CHO-dihydropyridines in a highly efficient and regioselective pathway. This protocol exhibits good functional group tolerance and good to excellent yields.

10.
Adv Mater ; 32(36): e2001284, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32715516

ABSTRACT

The emergence of all-organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase-transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium-functionalized side chains along the channels within the frameworks. The resultant self-standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm-1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all-organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes.

11.
ACS Appl Mater Interfaces ; 11(31): 27897-27905, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31298523

ABSTRACT

Owing to the expanding function of Li-ion transmission channels, it is important to explore the doping effects of different compounds into sulfide solid electrolytes to improve their electrochemical performances. However, it is hard to characterize the doping behaviors within sulfide solid electrolytes with low crystallinity and poor stability just by conventional crystallography analytical methods. In this work, the dielectric spectrum testing combined with other analytical methods, such as 7Li solid-state nuclear magnetic resonance, X-ray photoelectron spectroscopy, and the electrochemical method, have been applied to investigate the dual-doping behaviors of WS2 and LiBr within Li7P3S11 glass-ceramic electrolytes. This research method can not only evaluate the internal acting effect between the skeleton of sulfide solid electrolytes and the migrating kinetics of Li ions but also explore the capacitance at the interfaces of LiCoO2/sulfide solid electrolytes. The experimental results show that the number of Li ions with fast transport velocity within Li2S-P2S5-based solid electrolytes has been increased. Meanwhile, the interfacial capacitances between Li2S-P2S5-based solid electrolytes and the LiCoO2 cathode have decreased after dual-doping of WS2 and LiBr, indicating a synergetic effect for the doped Li7P3S11 glass-ceramic electrolytes in terms of the ionic conductivities and interfacial compatibilities. This work may provide a novel analytical approach to explore both the diffusion kinetics and interfacial behaviors for the solid electrolytes of lithium batteries.

12.
ACS Appl Mater Interfaces ; 11(4): 4654-4666, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30600999

ABSTRACT

Ice accretion poses a severe impact on diverse aspects of human life. Although great efforts have been dedicated to prevent or alleviate ice adhesion to the surface of substrates by developing various icephobic coatings, it is still needed to improve the integrated performance. Herein, we present a novel strategy to prepare poly(dimethylsiloxane) (PDMS) slippage coatings by combining a soft architecture-driven branched PDMS with partial short PDMS-functionalized polyhedral oligomeric silsesquioxane (POSS) as a co-cross-linker, in which silicone oil with certain viscosity was added as a lubricant. The chemical structure, surface morphology, and icephobic durability of the prepared coatings were investigated with concerns for the potential anti-icing uses. The PDMS slippage coating shed light on extraordinary icephobic durability with the ice shear strength at approximately 11.2 kPa and maintained low values below 14 kPa even after 50 icing/deicing cycles. Due to the elaborate control of the cross-link density, the side chains of the branched PDMS provided a rich storage space for entrapped silicone oil for the formation of the interfacial slippage. Moreover, the introduction of the functionalized POSS brought about significantly improved mechanical resistance in abrasion and elastic modulus. It is suggested that the branched PDMS slippage coating is a promising candidate in practical anti-icing applications.

13.
ACS Omega ; 3(7): 7371-7379, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-31458896

ABSTRACT

Icelike gas hydrates deposited in the pipelines under low temperatures and high pressures could remarkably reduce the transport efficiency, and a low dosage of water-soluble polymers could act as kinetic hydrate inhibitors (KHIs) to prevent gas hydrate formation. It was believed that the hydrophobic moiety in the water-soluble polymers played a vital role in enhancing the KHI performance. In this work, amphiphilic copolymers containing hydrophobic polyhedral oligomeric silsesquioxane (POSS) and superhydrophilic sulfobetaine methacrylate (SBMA) as well as N-vinylcaprolactam (VCap) and N-vinylpyrrolidone (VP) were prepared, and an efficient effect of the obtained amphiphilic copolymers on tetrahydrofuran (THF) hydrate inhibition was found. When a certain amount of the amphiphilic copolymers was introduced, the THF hydrate as an analogue of structure II gas hydrates presented a prolonged induction time and gave rise to a looser state rather than a crystalline solid. Analyses of low-field nuclear magnetic resonance and differential scanning calorimetry verified that there were strong interactions between the copolymer and water molecules by incorporation of SBMA units, which could enhance the KHI properties of the prepared amphiphilic copolymers. Additionally, the hydrophobic POSS in the amphiphilic copolymers could possibly modulate the hydrophilic/hydrophobic balance, contributing to the synergistical ability of the copolymers for THF hydrate inhibition. It was suggested that the amphiphilic copolymers containing POSS and zwitterionic units with VCap or VP could have potential for the inhibition and antiaggregation of gas hydrates in the transportation pipelines.

SELECTION OF CITATIONS
SEARCH DETAIL
...