Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38894132

ABSTRACT

Partial discharge (PD) is a localized discharge phenomenon in the insulator of electrical equipment resulting from the electric field strength exceeding the local dielectric breakdown electric field. Partial-discharge signal identification is an important means of assessing the insulation status of electrical equipment and critical to the safe operation of electrical equipment. The identification effect of traditional methods is not ideal because the PD signal collected is subject to strong noise interference. To overcome noise interference, quickly and accurately identify PD signals, and eliminate potential safety hazards, this study proposes a PD signal identification method based on multiscale feature fusion. The method improves identification efficiency through the multiscale feature fusion and feature aggregation of phase-resolved partial-discharge (PRPD) diagrams by using PMSNet. The whole network consists of three parts: a CNN backbone composed of a multiscale feature fusion pyramid, a down-sampling feature enhancement (DSFB) module for each layer of the pyramid to acquire features from different layers, a Transformer encoder module dominated by a spatial interaction-attention mechanism to enhance subspace feature interactions, a final categorized feature recognition method for the PRPD maps and a final classification feature generation module (F-Collect). PMSNet improves recognition accuracy by 10% compared with traditional high-frequency current detection methods and current pulse detection methods. On the PRPD dataset, the validation accuracy of PMSNet is above 80%, the validation loss is about 0.3%, and the training accuracy exceeds 85%. Experimental results show that the use of PMSNet can greatly improve the recognition accuracy and robustness of PD signals and has good practicality and application prospects.

2.
Sensors (Basel) ; 22(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36236645

ABSTRACT

Energy saving in palletizing robot is a fundamental problem in the field of industrial robots. However, the palletizing robot often suffers from the problems of high energy consumption and lacking flexibility. In this work, we introduce a novel differential evolution algorithm to address the adverse effects caused by the instability of the initial trajectory parameters while reducing the energy. Specially, a simplified analytical model of the palletizing robot is firstly developed. Then, the simplified analytical model and the differential evolutionary algorithm are combined to form a planner with the goal of reducing energy consumption. The energy saving planner optimizes the initial parameters of the trajectories collected by the bionic demonstration system, which in turn enables a reduction in the operating power consumption of the palletizing robot. The major novelty of this article is the use of a differential evolutionary algorithm that can save the energy consumption as well as boosting its flexibility. Comparing with the traditional algorithms, the proposed method can achieve the state-of-the-art performance. Simulated and actual experimental results illustrate that the optimized trajectory parameters can effectively reduce the energy consumption of palletizing robot by 16%.


Subject(s)
Robotics , Algorithms , Bionics , Physical Phenomena , Robotics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...