Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 345: 118928, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37683382

ABSTRACT

With the increasing global concern about food waste management, finding efficient ways to convert it into valuable products is crucial. The addition of zero-valent iron and magnetite to enhance ethanol and lactic acid fermentation yields from food waste emerges as a potential solution. This study compared the effects of 50-nm and 500-nm particle sizes of zero-valent iron and magnetite on ethanol and lactic acid fermentation and analyzed the mechanism of action from the perspective of organic matter material transformation and microbiology. The experimental results showed that 500-nm particle size magnetite and zero-valent iron could promote the hydrolysis of polysaccharides and proteins. 500-nm particle size magnetite could increase ethanol production (1.4-fold of the control), while 500-nm particle size zero-valent iron could increase lactic acid production (2.8-fold of the control). Metagenomic analysis showed that 500-nm magnetite increased the abundance of genes for amino acid metabolic functions, while 500-nm zero-valent iron increased the abundance of glycoside hydrolase genes (1.3-fold of the control). It's worth noting that while these findings are promising, they are based on controlled experimental conditions, and real-world applications may vary. his research not only offers a novel approach to augmenting anaerobic fermentation yields but also contributes to sustainable food waste management practices, potentially reducing environmental impacts and creating valuable products.


Subject(s)
Ferrosoferric Oxide , Refuse Disposal , Fermentation , Anaerobiosis , Food , Ethanol , Iron , Lactic Acid
2.
Environ Pollut ; 337: 122565, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37742861

ABSTRACT

Black soldier fly (BSF) individuals can consume animal excrement and transform it into high-protein food that can be used for animals. This study investigated the changes in the levels of heavy metals (HMs) in BSF individuals and their growth related to ingesting pig manure. According to the trial findings, BSFs fed pig manure had the highest protein concentration of 21.98% and were the least expensive, and its HMs within an acceptable range. Tilapia grew the best when its feed contained half of BSF. Its single-tailed fish weight gain rate was 73.12%, and its survival rate was 100%. The total target hazard quotient (TTHQ) values of tilapia fed with various concentrations of BSF were 0.098-0.181, which were all <1. This indicated that there were no potential hazards posed to humans or the environment. This study offers fundamental information regarding the safety of BSF assessment as well as scientific backing for the widespread utilization of BSF, especially in the pig manure-BSF-tilapia food chain.


Subject(s)
Diptera , Metals, Heavy , Tilapia , Humans , Animals , Swine , Larva , Manure , Food Chain
3.
J Environ Manage ; 347: 119038, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37769470

ABSTRACT

The presence of antibiotics and antibiotic resistance genes (ARGs) in food waste (FW) during anaerobic fermentation poses significant environmental and health risks. This study elucidated the potential of iron additives, specifically 500-nm and 50-nm zero-valent iron (ZVI) and magnetite, in mitigating these contaminants. These findings revealed that 500-nm magnetite significantly reduced tetracyclines by 81.04%, while 500-nm ZVI effectively reduced cefotaxime by 89.90%. Furthermore, both 500-nm and 50-nm ZVI were observed to decrease different types and abundance of heavy metal resistance and virulence genes. Interestingly, while 500-nm ZVI reduced the overall abundance of ARGs by 50%, 500-nm magnetite primarily reduced the diversity of ARGs without significantly impacting their abundance. These results elucidate the efficacy of iron additives in addressing antibiotic contamination and resistance during the anaerobic fermentation process of FW. The findings acquired from this study mitigate the development of innovative and environmentally sustainable technologies for FW treatment, emphasizing the reduction of environmental risks and enhancement of treatment efficiency.


Subject(s)
Iron , Refuse Disposal , Fermentation , Anti-Bacterial Agents/pharmacology , Anaerobiosis , Food , Ferrosoferric Oxide , Drug Resistance, Microbial/genetics , Genes, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...