Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
J Robot Surg ; 18(1): 200, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713381

ABSTRACT

Robot-assisted laparoscopic radical prostatectomy (RALP) has emerged as an effective treatment for prostate cancer with obvious advantages. This study aims to identify risk factors related to hypoxemia during the emergence from anesthesia in patients undergoing RALP. A cohort of 316 patients undergoing RALP was divided into two groups: the hypoxemia group (N = 134) and the non-hypoxemia group (N = 182), based on their postoperative oxygen fraction. Comprehensive data were collected from the hospital information system, including preoperative baseline parameters, intraoperative data, and postoperative recovery profiles. Risk factors were examined using multiple logistic regression analysis. The study showed that 38.9% of patients had low preoperative partial pressure of oxygen (PaO2) levels. Several clinical parameters showed significant differences between the hypoxemia group and the non-hypoxemia group, including weight (P < 0.0001), BMI (P < 0.0001), diabetes mellitus (P = 0.044), history of emphysema and pulmonary alveoli (P < 0.0001), low preoperative PaO2 (P < 0.0001), preoperative white blood cell count (P = 0.012), preoperative albumin (P = 0.048), intraoperative bleeding (P = 0.043), intraoperative CO2 accumulation (P = 0.001), duration of surgery (P = 0.046), postoperative hemoglobin level (P = 0.002), postoperative hypoxemia (P = 0.002), and early postoperative fever (P = 0.006). Multiple logistic regression analysis revealed BMI (adjusted odds ratio = 0.696, 95% confidence interval 0.612-0.719), low preoperative PaO2 (adjusted odds ratio = 9.119, 95% confidence interval 4.834-17.203), and history of emphysema and pulmonary alveoli (adjusted odds ratio = 2.804, 95% confidence interval 1.432-5.491) as independent factors significantly associated with hypoxemia on emergence from anesthesia in patients undergoing RALP. Our results demonstrate that BMI, lower preoperative PaO2, and a history of emphysema and pulmonary alveolar disease are independent risk factors associated with hypoxemia on emergence from anesthesia in patients undergoing RALP. These findings provide a theoretical framework for surgeons and anesthesiologists to facilitate strategies to mitigate postoperative hypoxemia in this unique patient population.


Subject(s)
Hypoxia , Laparoscopy , Postoperative Complications , Prostatectomy , Prostatic Neoplasms , Robotic Surgical Procedures , Humans , Prostatectomy/methods , Prostatectomy/adverse effects , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/adverse effects , Male , Hypoxia/etiology , Risk Factors , Laparoscopy/methods , Laparoscopy/adverse effects , Middle Aged , Aged , Prostatic Neoplasms/surgery , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Anesthesia Recovery Period , Anesthesia/methods
2.
J Am Chem Soc ; 146(11): 7831-7838, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38445480

ABSTRACT

Low-dimensional lead halide perovskites with broadband emission hold great promise for single-component white-light-emitting (WLE) devices. The origin of their broadband emission has been commonly attributed to self-trapped excitons (STEs) composed of localized electronic polarization with a distorted lattice. Unfortunately, the exact electronic and structural nature of the STE species in these WLE materials remains elusive, hindering the rational design of high-efficiency WLE materials. In this study, by combining ultrafast transient absorption spectroscopy and ab initio calculations, we uncover surprisingly similar STE features in two prototypical low dimensional WLE perovskite single crystals: 1D (DMEDA)PbBr4 and 2D (EDBE)PbBr4, despite of their different dimensionalities. Photoexcited excitons rapidly localize to intrinsic STEs within ∼250 fs, contributing to the white light emission. Crucially, STEs in both systems exhibit characteristic absorption features akin to those of Pb+ and Pb3+. Further atomic level theoretical simulations confirm photoexcited electrons and holes are localized on the Pb2+ site to form Pb+- and Pb3+-like species, resembling transient photoinduced Pb2+ disproportionation. This study provides conclusive evidence on the key excited state species for exciton self-trapping and broadband emission in low dimensional lead halide WLE perovskites and paves the way for the rational design of high-efficiency WLE materials.

3.
Biol Reprod ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38452209

ABSTRACT

Indoleamine 2, 3-dioxygenase (IDO) plays important roles in maternal immune tolerance. Female Sprague Dawley rats (9-11 weeks old) were randomly divided into an autoplastic transplantation group (n = 75) and an allograft transplantation group (n = 300) further divided into subgroups of ovarian transplantation, allograft ovarian transplantation, allograft ovarian transplantation with cyclosporine A treatment, allograft ovarian transplantation and transfection with IDO-expressing lentiviruses, and allograft ovarian transplantation and transfection with control lentiviruses. IDO was successfully transfected intothe transplanted ovarian tissue. The survival rate, success rate of ovarian transplantation, period until estrous cycle restoration, and estrogen levels of rats that received IDO-expressing lentiviruseswere significantly different from those of rats that underwent allograft transplantation and with control transfection (all P < 0.05), but not significantly different from those of rats that received autoplastic transplantation (all P > 0.05). The number of ovarian follicles in the transplanted ovarian tissue of rats that received IDO-expressing lentiviruses was also significantly higher. The expression level of IDO protein detected by immunohistochemistry and western blotting was especially high in ovaries that had received IDO-containing lentiviruses. Naturally pregnant rats were found in each group postoperatively. These results indicate that IDO-expressing lentiviruses were successfully transfected into transplanted ovarian tissues of rats and that IDO was stably expressed within a certain time. These findings suggest that the expression level of IDO protein is associated with an enhanced success rate of ovarian tissue transplantation and a short restoration period of endocrine function.

4.
Microorganisms ; 12(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38399785

ABSTRACT

The development of antibiotics was a turning point in the history of medicine; however, their misuse and overuse have contributed to the current global epidemic of antibiotic resistance. According to epidemiological studies, early antibiotic exposure increases the risk of immunological and metabolic disorders. This study investigated the effects of exposure to different doses of sulfamethazine (SMZ) on offspring mice and compared the effects of exposure to SMZ on offspring mice in prenatal and early postnatal periods and continuous periods. Furthermore, the effects of SMZ exposure on the gut microbiota of offspring mice were analyzed using metagenome. According to the results, continuous exposure to high-dose SMZ caused weight gain in mice. IL-6, IL-17A, and IL-10 levels in the female offspring significantly increased after high-dose SMZ exposure. In addition, there was a significant gender difference in the impact of SMZ exposure on the gut microbiota of offspring: Continuous high-dose SMZ exposure significantly decreased the relative abundance of Ligilactobacillus murinus, Limosilactobacillus reuteri, Lactobacillus johnsonii, and Bifidobacterium pseudolongum (p < 0.05) in female offspring mice; however, these significant changes were not observed in male offspring mice.

5.
Pharmgenomics Pers Med ; 17: 1-11, 2024.
Article in English | MEDLINE | ID: mdl-38204802

ABSTRACT

Background: Circular RNA PVT1 (circPVT1) is aberrantly expressed in several cancers, but its functional role and clinical relevance in bladder urothelial carcinoma (BLCA) remain unknown. This study aimed to identify the expression level of circPVT1 in BLCA and investigated its functional relevance with BLCA progression both in vitro and in vivo. Methods: GEPIA, UALCAN, and OncoLnc were referred to presented data. Quantitative real-time PCR (qPCR) was used for the measurement of transnational expression of genes in BLCA specimens and cell lines. Immunohistochemistry (IHC) and fluorescence in situ hybridization analysis (FISH) assays were performed to detect HER2 amplification, Pearson's correlation analysis to analyze the correlation between circPVT1 expression and clinical characteristics, Cox regression and K-M survival analyses to analyze prognostic factors. A nomogram was constructed for predicting prognosis. The proliferation of cells was measured by CCK-8 and colony formation assay, and the proliferation in vivo was evaluated using nude mouse models. qPCR was used to detect the expression of proliferation-related genes. Results: circPVT1 was but mRNA PVT1 was not significantly overexpressed in BLCA. A high circPVT1 expression was associated with a better survival and negative HER2, but not with age, gender, and T stage. circPVT1 was an independent prognostic factor for the overall survival of BLCA patients. Knocking down circPVT1 promoted BLCA proliferation in vitro and in vivo. Knocking down circPVT1 upregulated ERBB2, MKI67, and PCNA expression and downregulated TP53 expression, but exerted no influence on CCND1 and CCNB1 expression. Conclusion: circPVT1 is a tumor suppressor and novel prognostic biomarker for BLCA.

6.
Sci Rep ; 14(1): 1917, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253558

ABSTRACT

Adipose tissue-derived stem cells (ADSCs) have been shown to improve erectile function in animal models of erectile dysfunction. However, few studies have been carried out using a reliable in vivo imaging method to trace transplanted cells in real time, which is necessary for systematic investigation of cell therapy. The study aims to explore the feasibility of non-invasively monitoring intracavernous injection of ADSCs in rat and miniature pig corpus cavernosum using in vivo magnetic resonance (MR) imaging. Thirty-six male Sprague Dawley rats (10 weeks old) and six healthy, sexually mature male miniature pigs (20 kg weight) were obtained. ADSCs were isolated from paratesticular fat of donor rats and cultured. Then ADSCs were labeled with superparamagnetic iron oxide nanoparticles (SPIONs), a type of MR imaging contrast agent, before transplantation into rats and pigs. After intracavernous injection, all rats and pigs underwent and were analyzed by MR imaging at the day of ADSC transplantation and follow-up at 1, 2 and 4 weeks after transplantation. In addition, penile histological examination was performed on all rats and pigs before (n = 6) and at 1 day (n = 6), 1 week (n = 6), 2 weeks (n = 6) or 4 weeks (n = 12) after ADSC transplantation. SPION-labeled ADSCs demonstrated a strong decreased signal intensity compared with distilled water, unlabeled ADSCs or agarose gel. SPION-labeled ADSCs showed a hypointense signal at all concentrations, and the greatest hypointense signal was observed at the concentration of 1 × 106. MR images of the corpus cavernosum showed a hypointense signal located at the injection site. T2*-weighted signal intensity increased over the course of 1 week after ADSCs transplantation, and demonstrated a similar MR signal with that before ADSCs transplantation. After SPION-labeled ADSC injection, T2*-weighted MR imaging clearly demonstrated a marked hypointense signal in pig corpus cavernosum. The T2*-weighted signal faded over time, similar to the MR imaging results in rats. Obvious acute inflammatory exudation was induced by intracavernous injection, and the T2*-weighted signal intensity of these exudation was higher than that of the injection site. The presence of iron was detected by Prussian blue staining, which demonstrated ADSC retention in rat corpus cavernosum. Lack of cellular infiltrations were demonstrated by H&E staining before and 4 weeks after transplantation, which indicated no negative immune response by rats. Prussian blue staining was positive for iron oxide nanoparticles at 2 weeks after transplantation. SPION-labeled ADSCs showed a clear hypointense signal on T2-weight MRI in vitro and in vivo. The MR signal intensity in the corpus cavernosum of the rats and miniature pigs faded and disappeared over time after ADSC transplantation. These findings suggested that MR imaging could trace transplanted ADSCs in the short term in the corpus cavernosum of animals.


Subject(s)
Ferrocyanides , Magnetic Iron Oxide Nanoparticles , Magnetic Resonance Imaging , Male , Rats , Animals , Swine , Swine, Miniature , Rats, Sprague-Dawley
7.
Chembiochem ; 25(2): e202300578, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37960968

ABSTRACT

Poly (ethylene terephthalate) (PET) is one of the most commonly used plastics in daily life and various industries. Enzymatic depolymerization and recycling of post-consumer PET (pc-PET) provides a promising strategy for the sustainable circular economy of polymers. Great protein engineering efforts have been devoted to improving the depolymerization performance of PET hydrolytic enzymes (PHEs). In this review, we first discuss the mechanisms and challenges of enzymatic PET depolymerization. Subsequently, we summarize the state-of-the-art engineering of PHEs including rational design, machine learning, and directed evolution for improved depolymerization performance, and highlight the advances in screening methods of PHEs. We further discuss several factors that affect the enzymatic depolymerization efficiency. We conclude with our perspective on the opportunities and challenges in bio-recycling and bio-upcycling of PET wastes.


Subject(s)
Machine Learning , Polyethylene Terephthalates , Hydrolysis , Polymers , Protein Engineering , Plastics
8.
J Agric Food Chem ; 71(47): 18405-18413, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37962542

ABSTRACT

Noncatalytic carbohydrate-binding modules (CBMs) play important roles in the function of lytic polysaccharide monooxygenases (LPMOs) but have not been well demonstrated for starch-active AA13 LPMO. In this study, four new CBMs were investigated systematically for their influence on MtLPMO toward starch in terms of substrate binding, H2O2 production activity, oxidative product yields, and the degradation effect with α-amylase and glucoamylase toward different starch substrates. Among the four MtLPMO-CBM chimeras, MtLPMO-CnCBM harboring the CBM fromColletotrichum nymphaeae showed the highest substrate binding toward different types of starch compared to MtLPMO without CBM. MtLPMO-PvCBM harboring the CBM from Pseudogymnoascus verrucosus and MtLPMO-CnCBM showed dramatically enhanced H2O2 production activity of 4.6-fold and 3.6-fold, respectively, than MtLPMO without CBM. More importantly, MtLPMO-CBM generated more oxidative products from starch polysaccharides degradation than MtLPMO alone, with 6.0-fold and 4.6-fold enhancement obtained from the oxidation of amylopectin and corn starch with MtLPMO-CnCBM, and a 5.2-fold improvement obtained with MtLPMO-AcCBM for amylose. MtLPMO-AcCBM significantly boosted the yields of reducing sugar with α-amylase upon degrading amylopectin and corn starch. These findings demonstrate that CBMs greatly influence the performance of starch-active AA13 LPMOs due to their enhanced binding and H2O2 production activity.


Subject(s)
Fungal Polysaccharides , Mixed Function Oxygenases , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Starch/metabolism , Amylopectin , Hydrogen Peroxide/metabolism , Polysaccharides/metabolism , alpha-Amylases
9.
Life Sci Alliance ; 6(12)2023 12.
Article in English | MEDLINE | ID: mdl-37816585

ABSTRACT

This study aimed to map the hub genes and potential pathways that might be involved in the molecular pathogenesis of EGFR-TKI resistance in NSCLC. We performed bioinformatics analysis to identify differentially expressed genes, their function, gene interactions, and pathway analysis between EGFR-TKI-sensitive and EGFR-TKI-resistant patient-derived xenotransplantation samples based on Gene Expression Omnibus database. Survival analysis was performed via the GEPIA database (GEO). The relationship between the key gene ITGAM and the therapeutic candidates was retrieved from DGIdb. A total of 1,302 differentially expressed genes were identified based on GEO. The PPI network highlighted 10 potential hub genes. Only ITGAM was linked to poor DSF in NSCLC patients. A total of 10 drugs were predicted to be potential therapeutics for NSCLC with EGFR-TKI resistance. This study indicates the hub genes related to EGFR-TKI resistance in NSCLC through bioinformatics technologies which can improve the understanding of the mechanisms of EGFR-TKI resistance and provide novel insights into therapeutics.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Biomarkers
10.
Article in English | MEDLINE | ID: mdl-37817514

ABSTRACT

AIM AND OBJECTIVE: Traditional Chinese Medicine prescribes Yantiao Formula (YTF; peach kernel, mirabilite, Angelica sinensis, Radix Scrophulariae, raw rhubarb, Radix Paeoniae, Flos Lonicerae, Forsythia, and Ophiopogon japonicus) to treat sepsis. Clinically, it reduced the inflammatory response of sepsis. It also reduced lung damage by decreasing the level of TNF-α in septic rats' serum. Using network pharmacology analysis, we investigated the efficacy network and mechanism of YTF in treating sepsis. MATERIALS AND METHODS: We used the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and a Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine (BATMAN-TCM) combined with literature to collect the main components in YTF and their targets. DisGeNET and GENECARDS databases were used for sepsis-related targets. Cytoscape 3.7.1 software was used to construct the herbcomponent- target and ingredient-target-disease interaction protein-protein interaction networks of YTF. The jvenn was used to perform the intersection of YTF targets and sepsis targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. We also created a sepsis rat model using cecal ligation and perforation and stimulated alveolar macrophages (NR8383) with endotoxin to investigate the mechanisms of YTF. RESULTS: GO, and KEGG enrichment analysis revealed that these targets involved mineralocorticoid secretion, aldosterone secretion, active regulation of chronic inflammatory response, the exogenous coagulation pathway, and other pathophysiology. It was linked to various inflammatory factors and the MAPK pathway. YTF inhibits the p38MAPK pathway and decreases TNF- α, IL-6, and CXCL8 levels. CONCLUSION: YTF has a multi-component, multi-target, and multi-channel role in treating sepsis. The primary mechanisms may involve inhibiting the p38MAPK pathway to reduce the inflammatory response.

11.
Front Cardiovasc Med ; 10: 1242124, 2023.
Article in English | MEDLINE | ID: mdl-37731518

ABSTRACT

Background: Open repair and replacement of the diseased aorta is still the standard treatment for type A aortic dissection (TAAD) in most patients. In endovascular treatment alone, ensuring adequate blood supply to the brain while covering the dissection with a stent is difficult. Case presentation: This study includes a 71-year-old male patient with type A aortic dissection presented at a recent follow-up examination after having undergone thoracic endovascular aortic repair (TEVAR) plus left subclavian artery chimney stent reconstruction for descending aortic dissection 5 years ago. Preoperative computed tomographic angiography, computed tomographic perfusion, and transcranial Doppler showed an intact cerebral arterial ring and good collateral circulation. We successfully performed an endovascular repair of the thoracic aorta with venoarterial extracorporeal membrane oxygenation (V-A ECMO) to protect the craniocerebral blood supply, greatly increase the safety of the operation, and ensure a good prognosis. Conclusion: TEVAR under V-A ECMO protection is beneficial for patients with TAAD because of its minimal trauma, rapid recovery, few complications, and low mortality.

12.
Clin Transl Sci ; 16(10): 1982-1996, 2023 10.
Article in English | MEDLINE | ID: mdl-37551782

ABSTRACT

The purpose of this study was to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of SN1011, a novel Bruton tyrosine kinase (BTK) inhibitor, and food effects in healthy subjects. In this phase I trial, subjects received single ascending doses (SADs) of SN1011 (100 to 800 mg), multiple ascending doses (MADs) of SN1011 (200 to 600 mg), or placebo q.d. Additionally, 12 subjects randomly received a single dose of SN1011 600 mg under fasting states and then fed states, vice versa. Safety was assessed per Common Terminology Criteria for Adverse Events version 5.0. Pharmacokinetic parameters were calculated by noncompartmental analysis and BTK receptor occupancy in peripheral blood monocytes was determined. Seventy-one healthy subjects were dosed in five SAD cohorts, three MAD cohorts, and one food effect cohort, with 57 receiving SN1011 and 14 receiving placebo. No serious adverse events (AEs) were reported. There was no correlation between AE occurrences and SN1011 exposure. The three most frequent AEs with SN1011 were increased blood triglycerides, decreased neutrophil count, and decreased leucocyte count. SN1011 exhibited a dose-proportional increase in maximum plasma concentration and area under the time concentration curve following single and multiple dose administrations, with an accumulation ratio of 1.5 to 2.2 after multiple dose administrations. No difference in SN1011 exposure was observed between fed states. BTK receptor occupancy remained above 83% over 24 h after single administration and remained above 80% for the MAD groups for 10 days of continuous q.d. administration. SN1011 was well-tolerated and safe after single or multiple exposures to healthy subjects, supporting further clinical development of SN1011 for treatment of autoimmune diseases.


Subject(s)
Fasting , Humans , Healthy Volunteers , Dose-Response Relationship, Drug , Double-Blind Method , Area Under Curve
13.
J Therm Biol ; 116: 103655, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37506522

ABSTRACT

Intestinal barrier dysfunction often exists in the heat stroke (HS) pathological process, which increases intestinal permeability and induces endotoxemia. The upregulation of MLCK is a crucial player affecting intestinal permeability. This study aimed to explore whether inhibiting myosin light chain kinase (MLCK) can improve HS-induced intestinal injury in rats. Twelve-week-old Wistar male rats were divided into three groups: the control group, the HS model group, and the treatment group [HS model + ML-7 (MLCK inhibitor)]. HS impaired the tight junctions in the rat gut and increased permeability. Additionally, increased inflammatory factors in serum, activation of apoptosis, and downregulation of tight junction proteins were observed in intestinal cells. ML-7 significantly inhibited the MLCK/p-MLC2 signaling pathway, increased the expression of tight junction proteins, reduced intestinal permeability, reduced apoptosis and alleviated the intestinal damage caused by HS. ML-7 inhibited HS-induced apoptosis of intestinal epithelial cells by regulating the ERK/p38/HSP70 axis. Furthermore, inhibition of MLCK upregulated HSP70 expression through activation of the ERK pathway and inhibited cell apoptosis by abolishing the p38 MAPK pathway. In conclusion, inhibiting the MLCK/p-MLC2 signaling pathway reduces HS-induced intestinal permeability and protects the intestinal mucosal barrier.


Subject(s)
Heat Stroke , Intestinal Diseases , Rats , Male , Animals , Myosin-Light-Chain Kinase/metabolism , Rats, Wistar , Tight Junction Proteins , Heat Stroke/complications
14.
BMC Genomics ; 24(1): 252, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165305

ABSTRACT

BACKGROUND: The long non-coding RNAs (lncRNAs) are critical regulators of diverse biological processes. Nevertheless, a global view of its expression and function in the mouse retina, a crucial model for neurogenesis study, still needs to be made available. RESULTS: Herein, by integrating the established gene models and the result from ab initio prediction using short- and long-read sequencing, we characterized 4,523 lncRNA genes (MRLGs) in developing mouse retinas (from the embryonic day of 12.5 to the neonatal day of P28), which was so far the most comprehensive collection of retinal lncRNAs. Next, derived from transcriptomics analyses of different tissues and developing retinas, we found that the MRLGs were highly spatiotemporal specific in expression and played essential roles in regulating the genesis and function of mouse retinas. In addition, we investigated the expression of MRLGs in some mouse mutants and revealed that 97 intergenic MRLGs might be involved in regulating differentiation and development of retinal neurons through Math5, Isl1, Brn3b, NRL, Onecut1, or Onecut2 mediated pathways. CONCLUSIONS: In summary, this work significantly enhanced our knowledge of lncRNA genes in mouse retina development and provided valuable clues for future exploration of their biological roles.


Subject(s)
RNA, Long Noncoding , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Retina/metabolism , Gene Expression Profiling , Hepatocyte Nuclear Factor 6/genetics , Hepatocyte Nuclear Factor 6/metabolism
15.
Angew Chem Int Ed Engl ; 62(14): e202218390, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36751696

ABSTRACT

PETase displays great potential in PET depolymerization. Directed evolution has been limited to engineer PETase due to the lack of high-throughput screening assay. In this study, a novel fluorescence-based high-throughput screening assay employing a newly designed substrate, bis (2-hydroxyethyl) 2-hydroxyterephthalate (termed BHET-OH), was developed for PET hydrolases. The best variant DepoPETase produced 1407-fold more products towards amorphous PET film at 50 °C and showed a 23.3 °C higher Tm value than the PETase WT. DepoPETase enabled complete depolymerization of seven untreated PET wastes and 19.1 g PET waste (0.4 % Wenzyme /WPET ) in liter-scale reactor, suggesting that it is a potential candidate for industrial PET depolymerization processes. The molecular dynamic simulations revealed that the distal substitutions stabilized the loops around the active sites and transmitted the stabilization effect to the active sites through enhancing inter-loop interactions network.


Subject(s)
Hydrolases , Polyethylene Terephthalates , Hydrolases/metabolism , Polyethylene Terephthalates/chemistry , Catalytic Domain
16.
Cancer Imaging ; 23(1): 1, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36600283

ABSTRACT

PURPOSE: A comparative retrospective study to assess the impact of PSMA Ligand PET/MRI ([68 Ga]-Ga-PSMA-11 and [18F]-F-PSMA-1007 PET/MRI) as a new method of target delineation compared to conventional imaging on whole-pelvis radiotherapy for high-risk prostate cancer (PCa). PATIENTS AND METHODS: Forty-nine patients with primary high-risk PCa completed the whole-pelvis radiotherapy plan based on PSMA PET/MRI and MRI. The primary endpoint compared the size and overlap of clinical target volume (CTV) and nodal gross tumour volume (GTVn) based on PSMA PET/MRI and MRI. The diagnostic performance of two methods for pelvic lymph node metastasis (PLNM) was evaluated. RESULTS: In the radiotherapy planning for high-risk PCa patients, there was a significant correlation between MRI-CTV and PET/MRI-CTV (P = 0.005), as well as between MRI-GTVn and PET/MRI-GTVn (P < 0.001). There are non-significant differences in the CTV and GTVn based on MRI and PET/MRI images (P = 0.660, P = 0.650, respectively). The conformity index (CI), lesion coverage factor (LCF) and Dice similarity coefficient (DSC) of CTVs were 0.999, 0.953 and 0.954. The CI, LCF and DSC of GTVns were 0.927, 0.284, and 0.32. Based on pathological lymph node analysis of 463 lymph nodes from 37 patients, the sensitivity, specificity of PET/MRI in the diagnosis of PLNM were 77.78% and 99.76%, respectively, which were higher than those of MRI (P = 0.011). Eight high-risk PCa patients who finished PSMA PET/MRI changed their N or M stage. CONCLUSION: The CTV delineated based on PET/MRI and MRI differ little. The GTVn delineated based on PET/MRI encompasses metastatic pelvic lymph nodes more accurately than MRI and avoids covering pelvic lymph nodes without metastasis. We emphasize the utility of PET/MRI fusion images in GTVn delineation in whole pelvic radiotherapy for PCa. The use of PSMA PET/MRI aids in the realization of more individual and precise radiotherapy for PCa.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Retrospective Studies , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Gallium Radioisotopes , Positron-Emission Tomography , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Magnetic Resonance Imaging , Edetic Acid
17.
J Nanobiotechnology ; 21(1): 30, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36698190

ABSTRACT

BACKGROUND: Combined therapy based on the effects of cascade reactions of nanoplatforms to combat specific solid tumor microenvironments is considered a cancer treatment strategy with transformative clinical value. Unfortunately, an insufficient O2 supply and the lack of a visual indication hinder further applications of most nanoplatforms for solid tumor therapy. RESULTS: A visualizable nanoplatform of liposome nanoparticles loaded with GOD, H(Gd), and PFP and grafted with the peptide tLyP-1, named tLyP-1H(Gd)-GOD@PFP, was constructed. The double-domain peptide tLyP-1 was used to specifically target and penetrate the tumor cells; then, US imaging, starvation therapy and sonodynamic therapy (SDT) were then achieved by the ultrasound (US)-activated cavitation effect under the guidance of MR/PA imaging. GOD not only deprived the glucose for starvation therapy but also produced H2O2, which in coordination with 1O2 produced by H(Gd), enable the effects of SDT to achieve a synergistic therapeutic effect. Moreover, the synergistic therapy was enhanced by O2 from PFP and low-intensity focused ultrasound (LIFU)-accelerated redox effects of the GOD. The present study demonstrated that the nanoplatform could generate a 3.3-fold increase in ROS, produce a 1.5-fold increase in the maximum rate of redox reactions and a 2.3-fold increase in the O2 supply in vitro, and achieve significant tumor inhibition in vivo. CONCLUSION: We present a visualizable nanoplatform with tumor-penetrating ability that can be unlocked by US to overcome the current treatment problems by improving the controllability of the O2 supply, which ultimately synergistically enhanced cascade therapy.


Subject(s)
Feedback, Sensory , Nanoparticles , Humans , Hydrogen Peroxide , Cell Line, Tumor , Nanoparticles/chemistry , Peptides , Hypoxia
18.
ACS Appl Mater Interfaces ; 15(1): 309-326, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36576435

ABSTRACT

Cancer multidrug resistance (MDR) is an important reason that results in chemotherapy failure. As a main mechanism of MDR, overexpressed P-glycoprotein (P-gp) utilizes adenosine triphosphate (ATP) to actively pump chemotherapy drugs out of cells. In addition, metabolic reprogramming of drug-resistant tumor cells (DRTCs) exacerbates the specific hypoxic microenvironment and promotes tumor metastasis and recurrence. Therefore, we propose a novel sonodynamic therapy (SDT) paradigm to induce energy metabolism disorder and drug resistance change of DRTCs. A US-controlled "Nanoenabled Energy Metabolism Jammer" (TL@HPN) is designed using perfluoropentane (PFP) adsorbing oxygen in the core, and a targeting peptide (CGNKRTR) is attached to the liposome as the delivery carrier shell to incorporate hematoporphyrin monomethyl ether (HMME) and paclitaxel (PTX). The TL@HPN with ultrasonic/photoacoustic imaging (PAI/USI) precisely controlled the release of drugs and oxygen after being triggered by ultrasound (US), which attenuated the hypoxic microenvironment. SDT boosted the reactive oxygen species (ROS) content in tumor tissues, preferentially inducing mitochondrial apoptosis and maximizing immunogenic cell death (ICD). Persistently elevated oxidative stress levels inhibited ATP production and downregulated P-gp expression by disrupting the redox balance and electron transfer of the respiratory chain. We varied the effect of TL@HPN combined with PD-1/PD-L1 to activate autoimmunity and inhibit tumor metastasis, providing a practical strategy for expanding the use of SDT-mediated tumor energy metabolism.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Drug Resistance, Multiple , Reactive Oxygen Species/metabolism , Oxygen , Energy Metabolism , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Tumor Microenvironment
19.
Eur J Pharmacol ; 938: 175435, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36463946

ABSTRACT

Mitochondrial dysfunction has been reported to be involved in the pathogenesis of depression, and mitophagy is a key pathway for mitochondrial quality control. This study aimed to investigate the effect of baicalin on mitophagy in the hippocampus of mice exposed to chronic unpredictable mild stress (CUMS) and explore its potential mechanism. After exposure to CUMS for 6 weeks, mice were given baicalin (20 mg/kg) or fluoxetine (20 mg/kg) by oral gavage for 4 weeks, and HT22 cells were injured by corticosterone (CORT) in vitro. Depression-like behaviors were assessed by sucrose preference test and tail suspension test. The mitochondrial structure was observed by transmission electron microscopy. Detection of mitophagy and mitophagy-related protein by mitophagy kit and Western blot. The results showed that baicalin improved depressive-like behaviors in CUMS mice, and ameliorated mitochondrial structural impairment in the hippocampus neuron. Baicalin significantly down-regulated light chain 3(LC3)II/I, protein sequestosome 1 (P62), and translocase of the outer membrane 20 (TOM20), and up-regulated Nip-like protein (NIX), Adenylate activated protein kinase (AMPK), and Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α. Furthermore, molecular docking showed that baicalin interacts with AMPK through hydrogen bonding. Baicalin increased NIX and AMPK, and improved mitophagy level and mitochondrial function in HT22 cells. Treatment with Phorbol 12-Myristate 13-acetate demonstrated that up-regulation of NIX ameliorated CORT-induced mitochondrial dysfunction in HT22 cells. In conclusion, the present study suggested that the antidepressant effect of baicalin may be related to the enhancement of NIX-mediated mitophagy through activating the AMPK/PGC-1α pathway by directly binding to AMPK.


Subject(s)
AMP-Activated Protein Kinases , Mitophagy , Mice , Animals , Depression/drug therapy , Molecular Docking Simulation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Membrane Proteins , Mitochondrial Proteins
20.
Heliyon ; 8(12): e12083, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36531636

ABSTRACT

Depression is gradually becoming a primary mental disease threatening human health. Therefore, there is an urgent need to clarify the pathogenesis of depression and identify new effective natural antidepressants. This study aimed to investigate the antidepressant effects of baicalin and explore its potential mechanism in a mouse model of depression induced by chronic unpredictable mild stress (CUMS). Following a 6-week exposure to CUMS, mice were treated with baicalin (10 mg/kg) or fluoxetine (10 mg/kg) for 4 weeks by oral gavage. A sucrose preference test and a forced swimming test were performed to evaluate depression-like behaviors, and the levels of adenosine triphosphate (ATP) in the prefrontal cortex were measured. Moreover, gene expression and enzyme activities related to ATP production, and mitochondrial function, were monitored. The results indicated that baicalin and fluoxetine could alleviate CUMS-induced depression-like behaviors of mice. In addition, baicalin significantly elevated the ATP content and the expression of genes hexokinase 1 (Hk1), pyruvate dehydrogenase E1 alpha 1 (Pdha-1), isocitrate dehydrogenase (Idh), peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha (Pgc-1α), and sirtuin-1 (Sirt1) in the prefrontal cortex. Furthermore, baicalin increased the activity of the respiratory chain complexes I and V as well as the mitochondrial membrane potential. In conclusion, baicalin may exert its antidepressant effect partly by upregulating the expression of some genes coding for enzymes involved in the glycolysis and the tricarboxylic acid cycle, and improving the mitochondrial function to enhance the ATP level in the brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...