Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mutat Res ; 828: 111852, 2024.
Article in English | MEDLINE | ID: mdl-38368811

ABSTRACT

OBJECTIVES: Our group previously found that LINC00665 was upregulated in hepatocellular carcinoma (HCC) tissues through database analysis; however, the potential molecular mechanism of LINC00665 in HCC progression still needs further study. METHODS: qRTPCR was performed to determine the differential expression of LINC00665 and let-7i in HCC cells. Dual-luciferase reporter assays were performed to analyze the interaction of LINC00665 and let-7i. CCK-8 assays, scratch assays, Transwell invasion assays, qRTPCR and western blotting were performed to determine the regulatory mechanism of LINC00665/let-7i/HMGA1 in HCC cells. RESULTS: LINC00665 was upregulated in HCC cells compared with normal hepatocytes. A potential binding site between LINC00665 and let-7i was confirmed by dual-luciferase reporter assay. In HCC cells, inhibition of LINC00665 significantly reduced cell proliferation, migration and invasion ability via the let-7i/HMGA1 signaling axis. CONCLUSION: LINC00665 promotes the proliferation and invasion of HCC cells via the let-7i/HMGA1 signaling axis.


Subject(s)
Carcinoma, Hepatocellular , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , HMGA1a Protein , Liver Neoplasms , MicroRNAs , Neoplasm Invasiveness , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , HMGA1a Protein/genetics , HMGA1a Protein/metabolism , Cell Line, Tumor , Signal Transduction
2.
J Cell Mol Med ; 24(11): 6426-6437, 2020 06.
Article in English | MEDLINE | ID: mdl-32372557

ABSTRACT

We had previously demonstrated that the calcitonin gene-related peptide (CGRP) suppresses the oxidative stress and vascular smooth muscle cell (VSMC) proliferation induced by vascular injury. A recent study also indicated that CGRP protects against the onset and development of angiotensin II (Ang II)-induced hypertension, vascular hypertrophy and oxidative stress. However, the mechanism behind the effects of CGRP on Ang II-induced oxidative stress is unclear. CGRP significantly suppressed the level of reactive oxygen species (ROS) generated by NADPH oxidase in Ang II-induced VSMCs. The Ang II-stimulated activation of both Src and the downstream transcription factor, STAT3, was abrogated by CGRP. However, the antioxidative effect of CGRP was lost following the expression of constitutively activated Src or STAT3. Pre-treatment with H-89 or CGRP8-37 also blocked the CGRP inhibitory effects against Ang II-induced oxidative stress. Additionally, both in vitro and in vivo analyses show that CGRP treatment inhibited Ang II-induced VSMC proliferation and hypertrophy, accompanied by a reduction in ROS generation. Collectively, these results demonstrate that CGRP exhibits its antioxidative effect by blocking the Src/STAT3 signalling pathway that is associated with Ang II-induced VSMC hypertrophy and hyperplasia.


Subject(s)
Angiotensin II/pharmacology , Calcitonin Gene-Related Peptide/metabolism , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , src-Family Kinases/metabolism , Animals , Antioxidants/metabolism , Calcitonin/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
3.
Biochem Biophys Res Commun ; 521(2): 285-289, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31668374

ABSTRACT

Apoptosis is associated with various cardiovascular diseases. CGRP exerts a variety of effects within the cardiovascular system, and protects against the onset and development of angiotensin (Ang) II-induced vascular dysfunction and remodelling. However, it is not known whether CGRP has a direct effect on Ang II-induced apoptosis in vascular smooth muscle cells (VSMCs), and the mechanism underlying the anti-apoptotic role remains unclear. In this study, CGRP significantly suppressed reactive oxygen species (ROS) and apoptosis in Ang II-induced VSMCs. In VSMCs pre-treated with a CGRP receptor antagonist (CGRP8-37), the CGRP-mediated inhibition of Ang II-induced ROS and apoptosis was completely abolished. Moreover, pre-treatment with N-acetyl-L cysteine (NAC), an ROS scavenger, blocked the effects of CGRP on Ang II-induced apoptosis. In addition, the activation of CaMKII and the downstream transcription factor CREB stimulated by Ang II was abrogated by CGRP. Importantly, in both CGRP and NAC-treated VSMCs, CGRP failed to further attenuate CaMKII and CREB activation. The results demonstrate that CGRP attenuated Ang II-induced ROS-dependent apoptosis in VSMCs by inhibiting the CaMKII/CREB signalling pathway.


Subject(s)
Angiotensin II/pharmacology , Apoptosis , Calcitonin Gene-Related Peptide/physiology , Muscle, Smooth, Vascular/cytology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...