Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(5): 520-526, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38845500

ABSTRACT

OBJECTIVE: To identify the independent factors of unplanned interruption during continuous renal replacement therapy (CRRT) and construct a risk prediction model, and to verify the clinical application effectiveness of the model. METHODS: A retrospective study was conducted on critically ill adult patients who received CRRT treatment in the intensive care unit (ICU) of Zhejiang Hospital from January 2021 to August 2022 for model construction. According to whether unplanned weaning occurred, the patients were divided into two groups. The potential influencing factors of unplanned CRRT weaning in the two groups were compared. The independent influencing factors of unplanned CRRT weaning were screened by binary Logistic regression and a risk prediction model was constructed. The goodness of fit of the model was verified by a Hosmer-Lemeshow test and its predictive validity was evaluated by receiver operator characteristic curve (ROC curve). Then embed the risk prediction model into the hospital's ICU multifunctional electronic medical record system for severe illness, critically ill patients with CRRT admitted to the ICU of Zhejiang Hospital from November 2022 to October 2023 were prospectively analyzed to verify the model's clinical application effect. RESULTS: (1) Model construction and internal validation: a total of 331 critically ill patients with CRRT were included to be retrospectively analyzed. Among them, there were 238 patients in planned interruption group and 93 patients in unplanned interruption group. Compared with the planned interruption group, the unplanned interruption group was shown as a lower proportion of males (80.6% vs. 91.6%) and a higher proportion of chronic diseases (60.2% vs. 41.6%), poor blood purification catheter function (31.2% vs. 6.3%), as a higher platelet count (PLT) before CRRT initiation [×109/L: 137 (101, 187) vs. 109 (74, 160)], lower level of blood flow rate [mL/min: 120 (120, 150) vs. 150 (140, 180)], higher proportion of using pre-dilution (37.6% vs. 23.5%), higher filtration fraction [23.0% (17.5%, 32.9%) vs. 19.1% (15.7%, 22.6%)], and frequency of blood pump stops [times: 19 (14, 21) vs. 9 (6, 13)], the differences of the above 8 factors between the two groups were statistically significant (all P < 0.05). Binary Logistic regression analysis showed that chronic diseases [odds ratio (OR) = 3.063, 95% confidence interval (95%CI) was 1.200-7.819], blood purification catheter function (OR = 4.429, 95%CI was 1.270-15.451), blood flow rate (OR = 0.928, 95%CI was 0.900-0.957), and frequency of blood pump stops (OR = 1.339, 95%CI was 1.231-1.457) were the independent factors for the unplanned interruption of CRRT (all P < 0.05). These 4 factors were used to construct a risk prediction model, and ROC curve analysis showed that the area under the curve (AUC) predicted by the model was 0.952 (95%CI was 0.930-0.973, P = 0.003 0), with a sensitivity of 88.2%, a specificity of 89.9%, and a maximum value of 1.781 for the Youden index. (2) External validation: prospective inclusion of 110 patients, including 63 planned interruption group and 47 unplanned interruption group. ROC curve analysis showed that the AUC of the risk prediction model was 0.919 (95%CI was 0.870-0.969, P = 0.004 3), with a sensitivity of 91.5%, a specificity of 79.4%, and a maximum value of the Youden index of 1.709. CONCLUSIONS: The risk prediction model for unplanned interruption during CRRT has a high predictive efficiency, allowing for rapid and real-time identification of the high risk patients, thus providing references for preventative nursing.


Subject(s)
Continuous Renal Replacement Therapy , Critical Illness , Intensive Care Units , Humans , Retrospective Studies , Continuous Renal Replacement Therapy/methods , Risk Factors , Logistic Models , ROC Curve , Female , Male , Renal Replacement Therapy/methods , Middle Aged
2.
Opt Express ; 32(10): 17048-17057, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858897

ABSTRACT

AlGaN-based ultraviolet-C (UV-C) light-emitting diodes (LEDs) face challenges related to their extremely low external quantum efficiency, which is predominantly attributed to the remarkably inadequate transverse magnetic (TM) light extraction efficiency (LEE). In this study, we employ angle-resolved cathodoluminescence (ARCL) spectroscopy to assess the optical polarization of (0001)-oriented AlGaN multiple quantum well (MQW) structures in UV-C LEDs, in conjunction with a focused ion beam and scanning electron microscopy (FIB/SEM) system to etch samples with various inclination angles (θ) of sidewall. This technique effectively distinguishes the spatial distribution of TM- and transverse electric (TE)-polarized photons contributing to the luminescence of the MQW structure. CL spectroscopy confirms that UV-C LEDs with a θ of 35° exhibit the highest CL signal compared to samples with other θ. Furthermore, we establish a model using finite difference time domain (FDTD) simulation to validate the mechanism of the outcomes. The complementary contribution of TM and TE photons at different specific angles are distinguished by ARCL and confirmed by simulation. At angles near the sidewall, the CL is dominated by the TM photons, which mainly contribute to the increased LEE and the decreased degree of polarization (DOP) to make the spatial distribution of CL more uniform. Additionally, this method allows us to analyze the polarization of light without the need for polarizers, enabling the differentiation of TE and TM modes. This distinction provides flexibility for selecting different emission mode based on various application requirements. The presented approach not only opens up new opportunities for enhanced UV-C light extraction but also provides valuable insights for future endeavors in device fabrication and epitaxial film growth.

3.
Toxics ; 12(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38922084

ABSTRACT

To understand the influences of emulsified fuel on ship exhaust emissions more comprehensively, the emissions of particulate matter (PM), nitrated, oxygenated and parent polycyclic aromatic hydrocarbons (PAHs) were studied on a ship main engine burning emulsified heavy fuel oil (EHFO) and heavy fuel oil (HFO) as a reference. The results demonstrate that EHFO (emulsified heavy fuel oil) exhibits notable abilities to significantly reduce emissions of particulate matter (PM) and low molecular weight PAHs (polycyclic aromatic hydrocarbons) in the gas phase, particularly showcasing maximum reductions of 13.99% and 40.5%, respectively. Nevertheless, burning EHFO could increase the emission of high molecular weight PAHs in fine particles and pose a consequent higher carcinogenic risk for individual particles. The total average (gaseous plus particulate) ΣBEQ of EHFO exhausts (41.5 µg/m3) was generally higher than that of HFO exhausts (18.7 µg/m3). Additionally, the combustion of EHFO (extra-heavy fuel oil) can significantly alter the emission quantity, composition, and particle-size distribution of PAH derivatives. These changes may be linked to molecular structures, such as zigzag configurations in C=O bonds. Our findings may favor the comprehensive environmental assessments on the onboard application of EHFO.

4.
Article in English | MEDLINE | ID: mdl-38705489

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the efficacy of recombinant human superoxide dismutase (rhSOD) enemas in radiation-induced acute rectal injury (RARI) in patients with locally advanced cervical cancer. METHODS AND MATERIALS: In this phase 3, randomized, open-label trial (NCT04819685) conducted across 14 medical centers in China from June 2021 to August 2023, all patients received concurrent chemoradiation therapy (CCRT). The experimental group was treated with a rhSOD enema during chemoradiation therapy, and the control group had no enema. The Common Terminology Criteria for Adverse Events (version 5.0) was used to evaluate radiation therapy-induced side effects. Endoscopic appearance was assessed using the Vienna Rectoscopy Score. The primary endpoint in the acute phase was the occurrence rate and duration of grade ≥1 (≥G1) diarrhea during CCRT. Secondary endpoints included the occurrence rate and duration of ≥G2 and ≥G3 diarrhea, ≥G1 and ≥G2 diarrhea lasting at least 3 days, and damage to the rectal mucosa due to radiation therapy measured by endoscopy. RESULTS: Two hundred and eighty-three patients were randomly divided into the experimental (n = 141) or control group (n = 142). The mean number of ≥G1 and ≥G2 diarrhea days were significantly lower in the experimental group than in the control group (3.5 and 0.8 days vs 14.8 and 4.5 days, respectively; P < .001). The incidence of ≥G2 diarrhea decreased from 53.6% to 24.1% when rhSOD enemas were used. Use of antidiarrheals was lower in the experimental group (36.2% vs 55.7%, P < .001). Three patients felt intolerable or abdominal pain after rhSOD enema. RARI grades in the experimental group tended to be lower than those in the control group (P = .061). Logistic regression analysis revealed that rhSOD enema was associated with a lower occurrence rate of ≥G1/2 diarrhea for at least 3 days (P < .001). CONCLUSIONS: The results of this study suggest that rhSOD enema is safe and significantly reduces the incidence, severity, and duration of RARI, protecting the rectal mucosa.

5.
Sensors (Basel) ; 24(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793829

ABSTRACT

In this review, we meticulously analyze and consolidate various techniques used for measuring the junction temperature of light-emitting diodes (LEDs) by examining recent advancements in the field as reported in the literature. We initiate our exploration by delineating the evolution of LED technology and underscore the criticality of junction temperature detection. Subsequently, we delve into two key facets of LED junction temperature assessment: steady-state and transient measurements. Beginning with an examination of innovations in steady-state junction temperature detection, we cover a spectrum of approaches ranging from traditional one-dimensional methods to more advanced three-dimensional techniques. These include micro-thermocouple, liquid crystal thermography (LCT), temperature sensitive optical parameters (TSOPs), and infrared (IR) thermography methods. We provide a comprehensive summary of the contributions made by researchers in this domain, while also elucidating the merits and demerits of each method. Transitioning to transient detection, we offer a detailed overview of various techniques such as the improved T3ster method, an enhanced one-dimensional continuous rectangular wave method (CRWM), and thermal reflection imaging. Additionally, we introduce novel methods leveraging high-speed camera technology and reflected light intensity (h-SCRLI), as well as micro high-speed transient imaging based on reflected light (µ_HSTI). Finally, we provide a critical appraisal of the advantages and limitations inherent in several transient detection methods and offer prognostications on future developments in this burgeoning field.

6.
Opt Express ; 32(6): 8929-8936, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571138

ABSTRACT

A modified two-level model is proposed to study the spatially resolved current density distribution of GaN-based green miniaturized light-emitting diodes (mini-LEDs), combining with microscopic hyperspectral imaging. We found that the spatially resolved current density distribution reveals both the radiative and non-radiative recombination mappings, which can also be provided separately by this model. In addition, higher current density is not necessarily correlated with higher photon emission, especially for the regions around the electrode edges, where the high current density suggests current crowding and defect-related non-radiative recombination. The current density distribution of mini-LEDs is further verified by the laser-beam-induced current (LBIC) and the spatially resolved mappings of peak wavelength and FWHM. The modified two-level model also offers radiative/non-radiative mappings and is proved to be beneficial to determine the micro-zone current density distribution and to reveal the intrinsic radiative/non-radiative recombination mechanism of mini-LEDs.

7.
Front Immunol ; 15: 1336862, 2024.
Article in English | MEDLINE | ID: mdl-38545111

ABSTRACT

Background and purpose: Neutrophil-to-lymphocyte ratio (NLR) and monocyte-to-lymphocyte ratio (MLR) have been identified as potential prognostic markers in various conditions, including cancer, cardiovascular disease, and stroke. This study aims to investigate the dynamic changes of NLR and MLR following cerebral contusion and their associations with six-month outcomes. Methods: Retrospective data were collected from January 2016 to April 2020, including patients diagnosed with cerebral contusion and discharged from two teaching-oriented tertiary hospitals in Southern China. Patient demographics, clinical manifestations, laboratory test results (neutrophil, monocyte, and lymphocyte counts) obtained at admission, 24 hours, and one week after cerebral contusion, as well as outcomes, were analyzed. An unfavorable outcome was defined as a Glasgow Outcome Score (GOS) of 0-3 at six months. Logistic regression analysis was performed to identify independent predictors of prognosis, while receiver characteristic curve analysis was used to determine the optimal cutoff values for NLR and MLR. Results: A total of 552 patients (mean age 47.40, SD 17.09) were included, with 73.19% being male. Higher NLR at one-week post-cerebral contusion (adjusted OR = 4.19, 95%CI, 1.16 - 15.16, P = 0.029) and higher MLR at admission and at 24 h (5.80, 1.40 - 24.02, P = 0.015; 9.06, 1.45 - 56.54, P = 0.018, respectively) were significantly associated with a 6-month unfavorable prognosis after adjustment for other risk factors by multiple logistic regression. The NLR at admission and 24 hours, as well as the MLR at one week, were not significant predictors for a 6-month unfavorable prognosis. Based on receiver operating characteristic curve analysis, the optimal thresholds of NLR at 1 week and MLR at admission after cerebral contusion that best discriminated a unfavorable outcome at 6-month were 6.39 (81.60% sensitivity and 70.73% specificity) and 0.76 (55.47% sensitivity and 78.26% specificity), respectively. Conclusion: NLR measured one week after cerebral contusion and MLR measured at admission may serve as predictive markers for a 6-month unfavorable prognosis. These ratios hold potential as parameters for risk stratification in patients with cerebral contusion, complementing established biomarkers in diagnosis and treatment. However, further prospective studies with larger cohorts are needed to validate these findings.


Subject(s)
Brain Contusion , Neutrophils , Humans , Male , Middle Aged , Female , Monocytes , Retrospective Studies , Prospective Studies , Lymphocytes , Prognosis
8.
BMC Microbiol ; 24(1): 80, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459435

ABSTRACT

Chryseobacterium arthrosphaerae strain FS91703 was isolated from Rana nigromaculata in our previous study. To investigate the genomic characteristics, pathogenicity-related genes, antimicrobial resistance, and phylogenetic relationship of this strain, PacBio RS II and Illumina HiSeq 2000 platforms were used for the whole genome sequencing. The genome size of strain FS91703 was 5,435,691 bp and GC content was 37.78%. A total of 4,951 coding genes were predicted; 99 potential virulence factors homologs were identified. Analysis of antibiotic resistance genes revealed that strain FS91703 harbored 10 antibiotic resistance genes in 6 categories and 2 multidrug-resistant efflux pump genes, including adeG and farA. Strain FS91703 was sensitive to ß-lactam combination drugs, cephem, monobactam and carbapenems, intermediately resistant to phenicol, and resistant to penicillin, aminoglycosides, tetracycline, fluoroquinolones, and folate pathway inhibitors. Phylogenetic analysis revealed that strain FS91703 and C. arthrosphaerae CC-VM-7T were on the same branch of the phylogenetic tree based on 16 S rRNA; the ANI value between them was 96.99%; and the DDH values were 80.2, 72.2 and 81.6% by three default calculation formulae. These results suggested that strain FS91703 was a species of C. arthrosphaerae. Pan-genome analysis showed FS91703 had 566 unique genes compared with 13 other C. arthrosphaerae strains, and had a distant phylogenetic relationship with the other C. arthrosphaerae strains of the same branch in phylogenetic tree based on orthologous genes. The results of this study suggest that strain FS91703 is a multidrug-resistant and highly virulent bacterium, that differs from other C. arthrosphaerae strains at the genomic level. The knowledge about the genomic characteristics and antimicrobial resistance of strain FS91703 provides valuable insights into this rare species, as well as guidance for the treatment of the disease caused by FS91703 in Rana nigromaculata.


Subject(s)
Chryseobacterium , Animals , DNA, Bacterial/genetics , Phylogeny , Whole Genome Sequencing , Chryseobacterium/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ranidae , Genome, Bacterial
10.
Opt Express ; 32(1): 408-414, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175071

ABSTRACT

To enhance the performance of multi-junction photovoltaics, we investigated three different InP-based tunnel junction designs: p++-InGaAs/n++-InP tunnel junction, p++-InGaAs/i-InGaAs-/n++-InP tunnel junction, and p++-InGaAs/i-InGaAs/n++-InGaAs tunnel junction. The p++-InGaAs/i-InGaAs/n++-InGaAs tunnel junction demonstrated a peak tunneling current density of 495 A/cm2 and a resistivity of 9.3 × 10-4 Ωcm2, allowing the tunnel junction device to operate at a concentration over 30000 suns. This was achieved by inserting an undoped InGaAs quantum well at the p++-InGaAs/n++InGaAs junction interfaces, which enhanced its stability within the operating temperature range of multi-junction solar cells. Moreover, the p++-InGaAs/i-InGaAs/n++-InGaAs tunnel junction exhibited the lowest resistance.

11.
Patient Prefer Adherence ; 18: 53-67, 2024.
Article in English | MEDLINE | ID: mdl-38223440

ABSTRACT

Purpose: The purpose of this study was to examine how fatalism acts as a mediator in the correlation between family resilience and self-management among patients with chronic wounds in China. Participants and Methods: This study used a cross-sectional research design. A total of 269 adult patients (18-94 years old) with chronic wounds residing in Wuxi, China participated in this study. Participants completed the Chinese version of the Walsh Family Resilience Questionnaire, 16-item Chinese version of the Fatalism Scale, and Self-Management Scale of Chronic Wound Patients. We conducted correlation and mediation analyses using SPSS 27.0 and PROCESS 4.0. Results: The results indicated family resilience was a significant positive predictor of self-management (ß = 0.7101, p < 0.0001), and the pathway between family resilience and self-management was partially mediated by fatalism (Effect = 0.1432, 95% confidence interval [0.0625, 0.2341]). Conclusion: The results indicated that incorporating spiritual interventions into future person-centered self-management programs could align with the motivation of patients with chronic wounds and their families, and reduce the negative impact of fatalism on health outcomes.

12.
Opt Express ; 31(22): 36547-36556, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017804

ABSTRACT

The effects of different p-GaN layer thickness on the photoelectric and thermal properties of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) were investigated. The results revealed that appropriate thinning of the p-GaN layer enhances the photoelectric performance and thermal stability of DUV-LEDs, reducing current crowding effects that affect the external quantum efficiency and chip heat dissipation. The ABC + f(n) model was used to analyse the EQE, which helped in identifying the different physical mechanisms for DUV-LEDs with different p-GaN layer thickness. Moreover, the finite difference time domain simulation results revealed that the light-extraction efficiency of the DUV-LEDs exhibits a trend similar to that of damped vibration as the thickness of the p-GaN layer increases. The AlGaN-based DUV-LED with a p-GaN layer thickness of 20 nm exhibited the best photoelectric characteristics and thermal stability.

13.
J Neuroinflammation ; 20(1): 277, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001534

ABSTRACT

Luteolin is a flavonoid found in high concentrations in celery and green pepper, and acts as a neuroprotectant. PSMC5 (proteasome 26S subunit, ATPase 5) protein levels were reduced after luteolin stimulation in activated microglia. We aimed to determine whether regulating PSMC5 expression could inhibit neuroinflammation, and investigate the underlying mechanisms.BV2 microglia were transfected with siRNA PSMC5 before the addition of LPS (lipopolysaccharide, 1.0 µg/ml) for 24 h in serum free DMEM. A mouse model of LPS-induced cognitive and motor impairment was established to evaluate the neuroprotective effects of shRNA PSMC5. Intracerebroventricular administration of shRNA PSMC5 was commenced 7 days prior to i.p. injection of LPS (750 µg/kg). Treatments and behavioral experiments were performed once daily for 7 consecutive days. Behavioral tests and pathological/biochemical assays were performed to evaluate LPS-induced hippocampal damage. Molecular dynamics simulation was used to confirm the interaction between PSMC5 and TLR4 (Toll-like receptor 4) in LPS-stimulated BV2 microglia. SiRNA PSMC5 inhibited BV2 microglial activation, and suppressed the release of inflammatory factors (IL-1ß, COX-2, PGE2, TNF-α, and iNOS) upon after LPS stimulation in BV2 microglia. LPS increased IκB-α and p65 phosphorylation, which was attenuated by siRNA PSMC5. Behavioral tests and pathological/biochemical assays showed that shRNA PSMC5 attenuated LPS-induced cognitive and motor impairments, and restored synaptic ultrastructure and protein levels in mice. ShRNA PSMC5 reduced pro-inflammatory cytokine (TNF-α, IL-1ß, PGE2, and NO) levels in the serum and brain, and relevant protein factors (iNOS and COX-2) in the brain. Furthermore, shRNA PSMC5 upregulated the anti-inflammatory mediators interleukin IL-4 and IL-10 in the serum and brain, and promoted a pro-inflammation-to-anti-inflammation phenotype shift in microglial polarization. Mechanistically, shRNA PSMC5 significantly alleviated LPS-induced TLR4 expression. The polarization of LPS-induced microglial pro-inflammation phenotype was abolished by TLR4 inhibitor and in the TLR-4-/- mouse, as in shRNA PSMC5 treatment. PSMC5 interacted with TLR4 via the amino sites Glu284, Met139, Leu127, and Phe283. PSMC5 site mutations attenuated neuroinflammation and reduced pro-inflammatory factors by reducing TLR4-related effects, thereby reducing TLR4-mediated MyD88 (myeloid differentiation factor 88)-dependent activation of NF-κB. PSMC5 could be an important therapeutic target for treatment of neurodegenerative diseases involving neuroinflammation-associated cognitive deficits and motor impairments induced by microglial activation.


Subject(s)
Motor Disorders , Signal Transduction , Animals , Mice , Cognition , Cyclooxygenase 2/metabolism , Inflammation/metabolism , Lipopolysaccharides/adverse effects , Luteolin/pharmacology , Microglia/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , RNA, Small Interfering/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
J Biochem Mol Toxicol ; 37(11): e23453, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37437075

ABSTRACT

Chronic obstructive pulmonary disease (COPD) has high morbidity and mortality. Here, we aimed to explore the roles and potential correlation of placenta polypeptide injection (PPI) and MMP-9/TIMP-1 signaling pathway in COPD. BEAS-2B cells were treated with cigarette smoke extract (CSE) to establish a COPD cell model in vitro. The cell survival and cytotoxic effect were measured by CCK-8, LDH release and flow cytometry assays. The inflammatory responses were determined by western blot and ELISA assay. Cell fibrosis was assessed by immunofluorescence and western blot assays. PPI treatment had no cytotoxic effect on BEAS-2B cells until the final concentration reached to 10%. In the range of 0%-8% final concentration, PPI treatment weakened CSE-induced the decrease of cell viability and the increase of LDH level in a concentration-dependent manner. Four percent PPI treatment enhanced cell viability and decreased cell apoptosis of CSE-treated cells in a time-dependent manner. Moreover, 4% PPI treatment significantly decreased inflammatory responses and fibrosis induced by CSE, while AMPA (MMPs agonist) had opposite effects. Notably, AMPA reversed the protective roles of PPI on CSE-induced inflammation and fibrosis. Mechanistically, 4% PPI treatment significantly suppressed MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, and MMP-19 levels, but enhanced TIMP-1, TIMP-2, TIMP-3, and TIMP-4 levels. Among them, MMP-9 and TIMP-1 might be the main target of PPI. PPI effectively attenuated CSE-induced inflammation and fibrosis in vitro by regulating MMP-9/TIMP-1 signaling pathway.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Humans , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/pharmacology , Matrix Metalloproteinase 9/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/adverse effects , Pulmonary Disease, Chronic Obstructive/chemically induced , Signal Transduction , Inflammation/chemically induced , Inflammation/drug therapy , Peptides/adverse effects
16.
Opt Express ; 31(12): 20265-20273, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381425

ABSTRACT

The degradation of AlGaN-based UVC LEDs under constant temperature and constant current stress for up to 500 hrs was analyzed in this work. During each degradation stage, the two-dimensional (2D) thermal distributions, I-V curves, optical powers, combining with focused ion beam and scanning electron microscope (FIB/SEM), were thoroughly tested and analyzed the properties and failure mechanisms of UVC LEDs. The results show that: 1) the opto-electrical characteristics measured before/during stress indicate that the increased leakage current and the generation of stress-induced defects increase the non-radiative recombination in the early stress stage, resulting in a decrease in optical power; 2) the increase of temperature caused by the deterioration of the Cr/Al layer of p-metal after 48 hrs of stress aggravates the optical power in UVC LEDs. The 2D thermal distribution in conjunction with FIB/SEM provide a fast and visual way to precisely locate and analyze the failure mechanisms of UVC LEDs.

17.
J Ethnopharmacol ; 317: 116671, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37263317

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tibetan Patent Medicines (TPMs) have unique advantages in the treatment of ischemic stroke (IS) with the features of multi-component, multi-channel, and multi-target. In China, five TPMs mainly consisting of precious medicinal materials such as gold, pearls, and agate are widely utilized to treat IS and have achieved good results according to the current clinical practice. AIM OF THE STUDY: To systematically evaluate the efficacy and safety of the five TPMs orally in treating IS and provide a reference for future clinical application and research. MATERIALS AND METHODS: We searched the following 24 databases up to December 11, 2022: China National Knowledge Infrastructure (CNKI), Wanfang database, China Science and Technology Journal Database, Chinese Biomedical Database (CBM), PubMed, Embase, Web of Science, MEDLINE, Scopus, the Cochrane Library, ScienceDirect, etc. Comprehensive searches for randomized controlled trials (RCTs) of the five TPMs for IS were conducted. Outcome measures included clinical effective rate, neurological impairment score, activities of daily living (ADL), hematologic indices, and adverse events (AEs). The meta-regression, subgroup analyses, and sensitivity analyses were conducted to explore the sources of heterogeneity. We assessed the evidence grade of outcomes via the GRADE system. TSA software was used for trial sequential analyses of the clinical effective rate, neurological impairment score, and ADL. RESULTS: 17 RCTs (1603 patients) met our criteria. Compared with the control groups, the five TPMs showed greater improvement in clinical effective rate (RR = 1.23, 95% CI 1.17 to 1.29, P < 0.00001), neurological impairment score (SMD = -1.71, 95% CI -2.31 to -1.10, P < 0.00001), ADL (SMD = 1.97, 95% CI 1.26 to 2.68, P < 0.00001), hematocrit (MD = -1.56, 95% CI -2.83 to -0.29, P = 0.02), and hypersensitive-c-reactive-protein (MD = -2.96, 95% CI -3.30 to -2.61, P < 0.00001). AEs were reported in four RCTs and there was no statistical difference between groups (RD = -0.00, 95% CI -0.04 to 0.03, P = 0.82). The quality of evidence of the outcomes was rated as low to very low according to the GRADE system. The results of TSA provided firm evidence for the significant effect of the five TPMs on clinical effective rate, neurological impairment score, and ADL. CONCLUSIONS: This review showed that the five TPMs were beneficial in improving clinical effective rate, neurological impairment scores, and ADL. However, no definite conclusions for hematologic indices and AEs were drawn due to insufficient studies. Further high-quality clinical trials are required to confirm these findings.


Subject(s)
Ischemic Stroke , Humans , Tibet , Randomized Controlled Trials as Topic , Treatment Outcome , Ischemic Stroke/drug therapy , China
18.
Medicine (Baltimore) ; 102(21): e33885, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37233419

ABSTRACT

BACKGROUND: Bioresorbable scaffolds (BVS) provide a transient supporting force for blocked vessels and allow them to return to previous physiological characteristics. After verification with twists and turns, it has been acknowledged as an emerging revolution in percutaneous coronary intervention that expresses the current concept of intervention without placement. Through this bibliometric study, we organized the knowledge structure of bioresorbable scaffolds and attempted to predict future research hotspots in this field. METHODS: seven thousand sixty-three articles were retrieved from the web of science core collection database from 2000 to 2022. Then, we utilize CiteSpace 6.1.R2, Biblioshiny and VOS viewer 1.6.18 to analyze the data visually. RESULTS: First, according to the spatial analysis, the number of annual publications has shown an approximately increasing trend over the past 2 decades. The USA, the People's Republic of China, and GERMANY published the most articles on bioresorbable scaffolds. Second, SERRUYS P ranked first for his most prolific work and highest cited frequency in this domain. Third, the hotspots in this field can be inferred from the keyword distribution; they were the fabrication technique based on tissue engineering; the factors to be optimized for bioresorbable scaffolds, such as mechanical property, degradation, and implantation; and the common adverse effects of bioresorbable scaffolds, such as thrombosis. Most importantly, in terms of burst detection, we could speculate that cutting-edge technology for manufacturing scaffolds represented by 3D printing constitutes the future hotspots in bioresorbable scaffold development. CONCLUSION: In the first visualized bibliometric analysis of BVS, we attempt to provide a panoramic view. By enrolling extensive literature, we review the growing trend of BVSs. Since its first introduction, it has been through periods of early prosperity, questioned safety subsequently and the resultantly advanced techniques in recent years. In future, the research should focus on utilizing novel techniques to consummate the manufacturing quality and assure the safety of BVSs.


Subject(s)
Drug-Eluting Stents , Thrombosis , Humans , Absorbable Implants , Tissue Scaffolds , Drug-Eluting Stents/adverse effects , Thrombosis/etiology , Printing, Three-Dimensional
19.
Front Microbiol ; 14: 1179536, 2023.
Article in English | MEDLINE | ID: mdl-37187543

ABSTRACT

Magnaporthe oryzae is a filamentous fungus that causes rice blast. Rice blast seriously threatens the safety of food production. The normal synthesis and metabolism of fatty acids are extremely important for eukaryotes, and acyl-CoA is involved in fatty acid metabolism. Acyl-CoA binding (ACB) proteins specifically bind both medium-chain and long-chain acyl-CoA esters. However, the role of the Acb protein in plant-pathogenic fungi has not yet been investigated. Here, we identified MoAcb1, a homolog of the Acb protein in Saccharomyces cerevisiae. Disruption of MoACB1 causes delayed hyphal growth, significant reduction in conidial production and delayed appressorium development, glycogen availability, and reduced pathogenicity. Using immunoblotting and chemical drug sensitivity analysis, MoAcb1 was found to be involved in endoplasmic reticulum autophagy (ER-phagy). In conclusion, our results suggested that MoAcb1 is involved in conidia germination, appressorium development, pathogenicity and autophagy processes in M. oryzae.

SELECTION OF CITATIONS
SEARCH DETAIL
...