Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 24(4): 102348, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33912815

ABSTRACT

Fixation facilitates imaging of subcellular localization and cell morphology, yet it remains unknown how fixation affects cellular dimensions and intracellular fluorescence patterns, particularly during long-term storage. Here, we characterized the effects of multiple fixatives on several bacterial species. Fixation generally reduced cell length by 5-15%; single-cell tracking in microfluidics revealed that the length decrease was an aggregate effect of many steps in the fixation protocol and that fluorescence of cytoplasmic GFP but not membrane-bound MreB-msfGFP was rapidly lost with formaldehyde-based fixatives. Cellular dimensions were preserved in formaldehyde-based fixatives for ≥4 days, but methanol caused length to decrease. Although methanol preserved cytoplasmic fluorescence better than formaldehyde-based fixatives, some Escherichia coli cells were able to grow directly after fixation. Moreover, methanol fixation caused lysis in a subpopulation of cells, with virtually all Bacillus subtilis cells lysing after one day. These findings highlight tradeoffs between maintenance of fluorescence and membrane integrity for future applications of fixation.

2.
PLoS Biol ; 18(11): e3000786, 2020 11.
Article in English | MEDLINE | ID: mdl-33156840

ABSTRACT

Single-cell imaging, combined with recent advances in image analysis and microfluidic technologies, have enabled fundamental discoveries of cellular responses to chemical perturbations that are often obscured by traditional liquid-culture experiments. Temperature is an environmental variable well known to impact growth and to elicit specific stress responses at extreme values; it is often used as a genetic tool to interrogate essential genes. However, the dynamic effects of temperature shifts have remained mostly unstudied at the single-cell level, due largely to engineering challenges related to sample stability, heatsink considerations, and temperature measurement and feedback. Additionally, the few commercially available temperature-control platforms are costly. Here, we report an inexpensive (<$110) and modular Single-Cell Temperature Controller (SiCTeC) device for microbial imaging-based on straightforward modifications of the typical slide-sample-coverslip approach to microbial imaging-that controls temperature using a ring-shaped Peltier module and microcontroller feedback. Through stable and precise (±0.15°C) temperature control, SiCTeC achieves reproducible and fast (1-2 min) temperature transitions with programmable waveforms between room temperature and 45°C with an air objective. At the device's maximum temperature of 89°C, SiCTeC revealed that Escherichia coli cells progressively shrink and lose cellular contents. During oscillations between 30°C and 37°C, cells rapidly adapted their response to temperature upshifts. Furthermore, SiCTeC enabled the discovery of rapid morphological changes and enhanced sensitivity to substrate stiffness during upshifts to nonpermissive temperatures in temperature-sensitive mutants of cell-wall synthesis enzymes. Overall, the simplicity and affordability of SiCTeC empowers future studies of the temperature dependence of single-cell physiology.


Subject(s)
Heating/instrumentation , Microfluidic Analytical Techniques/methods , Single-Cell Analysis/methods , Equipment Design/instrumentation , Escherichia coli/genetics , Temperature , Thermometers
3.
Nature ; 559(7715): 617-621, 2018 07.
Article in English | MEDLINE | ID: mdl-30022160

ABSTRACT

Gram-negative bacteria possess a complex cell envelope that consists of a plasma membrane, a peptidoglycan cell wall and an outer membrane. The envelope is a selective chemical barrier1 that defines cell shape2 and allows the cell to sustain large mechanical loads such as turgor pressure3. It is widely believed that the covalently cross-linked cell wall underpins the mechanical properties of the envelope4,5. Here we show that the stiffness and strength of Escherichia coli cells are largely due to the outer membrane. Compromising the outer membrane, either chemically or genetically, greatly increased deformation of the cell envelope in response to stretching, bending and indentation forces, and induced increased levels of cell lysis upon mechanical perturbation and during L-form proliferation. Both lipopolysaccharides and proteins contributed to the stiffness of the outer membrane. These findings overturn the prevailing dogma that the cell wall is the dominant mechanical element within Gram-negative bacteria, instead demonstrating that the outer membrane can be stiffer than the cell wall, and that mechanical loads are often balanced between these structures.


Subject(s)
Cell Membrane/metabolism , Cell Wall/metabolism , Gram-Negative Bacteria/cytology , Gram-Negative Bacteria/metabolism , Cell Membrane/drug effects , Cell Wall/drug effects , Detergents/pharmacology , Escherichia coli/cytology , Escherichia coli/drug effects , Escherichia coli/metabolism , Gram-Negative Bacteria/drug effects , Microbial Viability/drug effects , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...