Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Cureus ; 16(7): e65721, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39211643

ABSTRACT

BACKGROUND AND OBJECTIVES: In ancient China, bee venom was widely used to treat various diseases. Although using bee venom is not currently a mainstream medical method, some have applied it to treat certain conditions, including idiopathic facial paralysis (IFP). Recently, melittin (Mel), the main active component of bee venom, has been shown strong anti-inflammatory and analgesic effects. However, how bee venom improves neurological dysfunction in facial paralysis remains unknown. This study aimed to investigate the anti-neurotraumatic effect of Mel on Schwann cells (SCs), the main cells of the neuron sheath, injured by oxidative stress. METHODS: A model of hypoxic SCs was established, and CCK-8 assay, siRNA transfection, enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, western blot, immunofluorescence, and cell ultrastructure analyses were conducted to investigate the mitigation of hypoxia-induced damage to SCs in vitro, revealing the effects of Mel on oxidative stress injury in SCs. RESULTS: The overexpression of HIF-1α in CoCl2-induced SCs (p < 0.05) indicated the establishment of an SCs hypoxia model. The proliferation and regeneration process of the hypoxic SCs enhanced in the Mel-treated group compared to the CoCl2 group has been proven through the CCK-8 experiment (p < 0.0001) and S-100 mRNA expression detection (p < 0.0001). The increased level of reactive oxygen species (ROS) (p < 0.001) and decreased superoxide dismutase (SOD) levels (p < 0.05) in the CoCl2-induced SCs indicated that Mel can alleviate the oxidative stress damage to SCs induced by CoCl2. Mel alleviated oxidative stress and inflammation in hypoxic SCs by reducing pro-inflammatory cytokines IL-1ß (p < 0.0001) and TNF-α (p < 0.0001). In addition, Mel augmented cellular vitality and regulated indicators related to oxygen metabolism, cell repair, neurometabolism, and vascular endothelial formation after hypoxia, such as C-JUN (p < 0.05), glial cell line-derived neurotrophic factor (GDNF; p < 0.001), vascular endothelial growth factor (VEGF; p < 0.05), hypoxia-inducible factor 1-alpha (HIF-1α; p < 0.05), interleukin-1 receptor type 1 (IL-1R1; p < 0.05), enolase1 (ENO1; p < 0.05), aldose reductase (AR; p < 0.01), SOD (p < 0.05), nerve growth factor (NGF; p < 0.05), and inducible nitric oxide synthase (iNOS; p < 0.05). In terms of its mechanism, Mel inhibited the expression of proteins associated with the NF-κB pathway such as IKK (p < 0.01), p65 (p < 0.05), p60 (p < 0.001), IRAK1 (p < 0.05), and increased IKB-α (p < 0.0001). Moreover, knocking out of IL-1R1 in the si-IL-1R1 group enhanced the therapeutic effect of Mel compared to the Mel-treated group (all of which p < 0.05). CONCLUSION: This research provided evidence of the substantial involvement of IL-1R1 in oxidative stress damage caused by hypoxia in SCs and proved that Mel alleviated oxidative stress injury in SCs by targeting IL-1R1 to downregulate the NF-κB-mediated inflammatory response. Mel could potentially serve as an innovative therapeutic approach for the treatment of IFP.

2.
Planta ; 260(3): 61, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060400

ABSTRACT

MAIN CONCLUSION: The SpHsfA8a upregulated expression can induce the expression of multiple heat-tolerance genes, and increase the tolerance of Arabidopsis thaliana to high-temperature stress. Sorbus pohuashanensis is an ornamental tree used in courtyards. However, given its poor thermotolerance, the leaves experience sunburn owing to high temperatures in summer, severely affecting its ornamental value. Heat-shock transcription factors play a critical regulatory role in the plant response to heat stress. To explore the heat-tolerance-related genes of S. pohuashanensis to increase the tree's high-temperature tolerance, the SpHsfA8a gene was cloned from S. pohuashanensis, and its structure and expression patterns in different tissues and under abiotic stress were analyzed, as well as its function in heat tolerance, was determined via overexpression in Arabidopsis thaliana. The results showed that SpHsfA8a encodes 416 amino acids with a predicted molecular weight of 47.18 kDa and an isoelectric point of 4.63. SpHsfA8a is a hydrophilic protein without a signal peptide and multiple phosphorylation sites. It also contains a typical DNA-binding domain and is similar to MdHsfA8a in Malus domestica and PbHsfA8 in Pyrus bretschneideri. In S. pohuashanensis, SpHsfA8a is highly expressed in the roots and fruits and is strongly induced under high-temperature stress in leaves. The heterologous expression of SpHsfA8a in A. thaliana resulted in a considerably stronger growth status than that of the wild type after 6 h of treatment at 45 °C. Its proline content, catalase and peroxidase activities also significantly increased, indicating that the SpHsfA8a gene increased the tolerance of A. thaliana to high-temperature stress. SpHsfA8a could induce the expression of multiple heat-tolerance genes in A. thaliana, indicating that SpHsfA8a could strengthen the tolerance of A. thaliana to high-temperature stress through a complex regulatory network. The results of this study lay the foundation for further elucidation of the regulatory mechanism of SpHsfA8a in response of S. pohuashanensis to high-temperature stress.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Heat Shock Transcription Factors , Heat-Shock Response , Plant Proteins , Sorbus , Sorbus/genetics , Sorbus/physiology , Sorbus/metabolism , Heat-Shock Response/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Plants, Genetically Modified , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Hot Temperature , Thermotolerance/genetics
3.
J Control Release ; 369: 622-629, 2024 May.
Article in English | MEDLINE | ID: mdl-38604383

ABSTRACT

Enhancing the delivery and release efficiency of hydroxyl agents, constrained by high pKa values and issues of release rate or unstable linkage, is a critical challenge. To address this, a self-immolative linker, composed of a modifiable p-hydroxybenzyl ether and a fast cyclization adapter (N-(ortho-hydroxyphenyl)-N-methylcarbamate) was strategically designed, for the synthesis of prodrugs. The innovative linker not only provides a side chain modification but also facilitates the rapid release of the active payloads, thereby enabling precise drug delivery. Particularly, five prodrug model compounds (J1, J2, J3, J5 and J6) were synthesized to evaluate the release rates by using ß-glucuronic acid as trigger and five hydroxyl compounds as model payloads. Significantly, all prodrug model compounds could efficiently release the hydroxyl payloads under the action of ß-glucuronidase, validating the robustness of the linker. And then, to assess the drug delivery and release efficiency using endogenous albumin as a transport vehicle, J1148, a SN38 prodrug modified with maleimide side chain was synthesized. Results demonstrated that J1148 covalently bound to plasma albumin through in situ Michael addition, effectively targeting the tumor microenvironment. Activated by ß-glucuronidase, J1148 underwent a classical 1, 6-elimination, followed by rapid cyclization of the adapter, thereby releasing SN38. Impressively, J1148 showed excellent therapeutic efficacy against human colonic cancer xenograft model, leading to a significant reduction or even disappearance of tumors (3/6 of mice cured). These findings underscore the potential of the designed linker in the delivery system of hydroxyl agents, positioning it at the forefront of advancements in drug delivery technology.


Subject(s)
Drug Delivery Systems , Irinotecan , Prodrugs , Prodrugs/administration & dosage , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Animals , Humans , Irinotecan/administration & dosage , Irinotecan/pharmacokinetics , Camptothecin/administration & dosage , Camptothecin/analogs & derivatives , Camptothecin/pharmacokinetics , Camptothecin/chemistry , Drug Liberation , Mice, Nude , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacokinetics , Female , Mice , Albumins/administration & dosage , Albumins/chemistry , Glucuronidase/metabolism , Mice, Inbred BALB C
4.
Front Psychol ; 13: 791291, 2022.
Article in English | MEDLINE | ID: mdl-36092086

ABSTRACT

Existing studies have found that childhood trauma is a risk predictor of cybervictimization, but few studies have explored the relationship between cumulative childhood trauma and college students' cybervictimization. This study explored the relationship and the roles of Internet addiction and Internet victimization between them. A total of 854 college students (568 females, M age = 18.92 years, SD = 0.86) completed a survey including the Short Form of Childhood Trauma Questionnaire, the Cyberbullying Inventory, the Young's Internet Addiction Scale, and the revised Roommate Relationships Questionnaire. The results showed that: (1) cumulative childhood trauma was significantly positively associated with cybervictimization; (2) Internet addiction played a mediating role between cumulative childhood trauma and cybervictimization; and (3) roommate relationships played a moderating role between cumulative childhood trauma and cybervictimization, as well as Internet addiction and cybervictimization. The research findings provide a theoretical and practical basis for the prevention and intervention of college students' cybervictimization.

5.
Front Microbiol ; 13: 913715, 2022.
Article in English | MEDLINE | ID: mdl-35935220

ABSTRACT

Bacillus thuringiensis produces insecticidal crystal proteins (ICPs) which exhibit strong insecticidal toxicity. But when used in the field, ICPs would be destroyed by ultraviolet (UV) radiation in sunlight, thus decreasing the insecticidal activity and shortening the persistence. To improve the duration of B. thuringiensis preparations, we endowed a highly toxic industrial B. thuringiensis HD-1 with UV tolerance by making it produce melanin, a pigment that absorbs UV radiation. In B. thuringiensis, melanin is derived from homogentisate (HGA), an intermediate in the tyrosine pathway. And the absence of homogentisate-1,2-dioxygenase (HmgA) will lead to the formation of melanin. In this study, we used the CRISPR/Cas9 system to knock out the hmgA gene and obtained a melanin-producing mutant HD-1-ΔhmgA from strain HD-1. The melanin yield by mutant HD-1-ΔhmgA reached 3.60 mg/mL. And the anti-UV test showed that melanin serves as a protection to both the organism and the ICPs. After UV irradiation for 3 h, mutant HD-1-ΔhmgA still had an 80% insecticidal activity against the cotton bollworm, Helicoverpa armigera, while the control line only had about 20%. This study creates a light-stable biopesticide prototype based on a classic industrial strain that can be applied directly and takes the melanin-producing strain as a concept to improve the preparation validity.

6.
Sci Rep ; 11(1): 10117, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980903

ABSTRACT

Sorbus pohuashanensis (Hance) Hedl. is a Chinese native alpine tree species, but the problem of introducing S. pohuashanensis to low altitude areas has not been solved. In this study, we aimed to explore the molecular regulatory network of S. pohuashanensis in response to high-temperature stress using RNA-Sequencing technology and physiological and biochemical determination. Based on transcriptomic data, we obtained 1221 genes (752 up-regulated and 469 down-regulated) that were differentially expressed during 8 h 43℃ treatment and candidate genes were related to calcium signaling pathway, plant hormone signal transduction, heat shock factors, chaperones, ubiquitin mediated proteolysis, cell wall modification, ROS scavenging enzymes, detoxification and energy metabolism. The analysis of high temperature response at the physiological level and biochemical level were performed. The chlorophyll fluorescence parameters of leaf cells decreased, the content of osmotic regulators increased, and the activity of ROS scavenging enzymes decreased. The molecular regulatory network of S. pohuashanensis in response to high-temperature stress was preliminarily revealed in this study, which provides fundamental information improving introducing methods and discovering heat-tolerant genes involved in high-temperature stress in this species and provides a reference for other plants of the genus Sorbus.


Subject(s)
Heat-Shock Response , Plant Proteins/genetics , Sorbus/genetics , Energy Metabolism , Gene Expression Profiling , Hot Temperature , Plant Proteins/metabolism , Sorbus/chemistry , Sorbus/physiology , Temperature
7.
Am J Dent ; 20 Spec No A: 28A-31A, 2007 Sep.
Article in English | MEDLINE | ID: mdl-19681256

ABSTRACT

PURPOSE: To evaluate efficacy and safety of peroxide-containing whitening strips and a paint-on gel relative to a non-peroxide experimental control. METHODS: After informed consent, 52 healthy adults in Shanghai, China were randomized to one of three treatment groups: 6% hydrogen peroxide whitening strips (Crest Whitestrips), 5.9% hydrogen peroxide paint-on gel (Colgate Simply White), or water rinse which served as a negative experimental control. Strip use was twice daily over 7 days, while the paint-on gel and rinse were used twice daily over 14 days. Efficacy was measured from standard digital images of the maxillary anterior teeth, and safety was assessed from interview and intraoral examination. RESULTS: Whitening strips provided the greatest end-of-treatment reduction in yellowness (Deltab*), with adjusted means +/- standard errors of -1.72 +/- 0.18 for the strip group, -0.48 +/- 0.10 for the paint-on gel group, and 0.13 +/- 0.09 for the water rinse group. For DeltaL* (lightness), end-of-treatment adjusted means +/- standard errors were 1.88 +/- 0.21 for the strip group, 0.60 +/- 0.15 for the paint-on gel, and -0.10 +/- 0.18 for the negative control. Groups differed significantly (P< 0.007) with respect to Deltab* and DeltaL* at end-of-treatment, as well as other color parameters. All treatments were well-tolerated.


Subject(s)
Hydrogen Peroxide/therapeutic use , Oxidants/therapeutic use , Tooth Bleaching/methods , Adolescent , Adult , China , Color , Cuspid/pathology , Female , Gels , Humans , Hydrogen Peroxide/administration & dosage , Image Processing, Computer-Assisted/methods , Incisor/pathology , Male , Maxilla , Middle Aged , Oxidants/administration & dosage , Photography, Dental/methods , Prospective Studies , Safety , Single-Blind Method , Time Factors , Tooth Bleaching/instrumentation , Tooth Discoloration/pathology , Tooth Discoloration/therapy , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL