Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2309859, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38377282

ABSTRACT

Designing and fabricating highly efficient oxygen evolution reaction (OER) electrocatalytic materials for water splitting is a promising and practical approach to green and sustainable low-carbon energy systems. Herein, a facile in situ growth self-template strategy by using ZIF-67 as a consumable layered double hydroxides (LDHs) template and silver nanowires (AgNWs) as 1D conductive cascaded substrate to controllably synthesize the target AgNWs@CoFe-LDH composites with unique hollow shell sugar gourd-like structure and enhanced directional electron transport effect is reported. The AgNWs exhibit the key functions of the close connection of CoFe-LDH nanocages and the support of the directional electron transport effect in the composite catalyst inducing electrons directionally moving from CoFe-LDH to AgNWs. Meanwhile, the CoFe-LDH nanocages with ultrathin nanosheets and hollow structural properties show abundant active sites for electrocatalytic oxygen generation. The versatile AgNWs@CoFe-LDH catalyst with optimized components, enhanced directional electron transport, and synergistic effect achieves high OER performance with the overpotential of 207 mV and long-term 50 h stability at 10 mA cm-2 in an alkaline medium. Moreover, in-depth insights into the microstructure, structure-activity relationships, identification of key intermediate species, and a proton-coupled four-electron OER mechanism based on experimental discovery and theoretical calculation are also demonstrated.

2.
ACS Appl Mater Interfaces ; 14(50): 56120-56131, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36472619

ABSTRACT

Lightweight polymer-based nanostructured aerogels are crucial for electromagnetic interference (EMI) shielding to protect electronic devices and humans from electromagnetic radiation. The construction of three-dimensional (3D) conductive networks is crucial to realize the excellent electromagnetic shielding performance of polymer-based aerogels. However, it is difficult to realize the interconnection of different conductive fillers in the polymer matrix, which limits the further improvement of their performance. Herein, 3D ordered hierarchical porous Fe3O4-decorated carbon nanotube (Fe3O4@CNT)/MXene/cross-linked aramid nanofiber (c-ANF)/polyimide (PI) aerogels were prepared via a unidirectional freezing strategy. Benefiting from the magnetic loss effect of Fe3O4 magnetic nanoparticles, the conductive and dielectric loss effects of CNTs, and the multiple reflections induced by the 3D ordered hierarchical porous structure, the Fe3O4@CNTs/MXene/c-ANFs/PI (FMCP) aerogels with the same contents of 8 wt % of Fe3O4@CNTs and MXene exhibit a high absolute EMI shielding effectiveness (SE) of up to 67.42 dB and a microwave reflection (SER) of 0.60 dB. More importantly, the phase transition of a small amount of MXene to TiO2 optimizes the impedance matching and transmission and then improves the microwave absorption. The FMCP aerogel has an outstanding normalized surface specific SE (SSE/t) which is up to 62,654 dB cm2·g-1. Meantime, the FMCP aerogels also show super-elasticity and could maintain 91.72% of the maximum stress after 1000 cycles of compression release under a fixed deformation of 60%.

SELECTION OF CITATIONS
SEARCH DETAIL
...