Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Signal Image Video Process ; 17(4): 865-872, 2023.
Article in English | MEDLINE | ID: mdl-34025811

ABSTRACT

To improve the performance of local learned descriptors, many researchers pay primary attention to the triplet loss network. As expected, it is useful to achieve state-of-the-art performance on various datasets. However, these local learned descriptors suffer from the inconsistency problem without considering the relationship between two descriptors in a patch. Consequently, the problem causes the irregular spatial distribution of local learned descriptors. In this paper, we propose a neat method to overcome the above inconsistency problem. The core idea is to design a triplet loss function of vertex-edge constraint (VEC), which takes the correlation between two descriptors of a patch into account. Furthermore, to minimize the non-matching descriptors' influence, we propose an exponential algorithm to reduce the difference between the long and short sides. The competitive performance against state-of-the-art methods on various datasets demonstrates the effectiveness of the proposed method.

2.
ACS Appl Mater Interfaces ; 13(19): 22304-22313, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33971712

ABSTRACT

Searching for high-performance Ni-based cathodes plays an important role in developing better aqueous nickel-zinc (Ni-Zn) batteries. For this purpose, herein, we demonstrate the design and synthesis of ultrathin α-Ni(OH)2 nanosheets branched onto metal-organic frameworks (MOFs)-derived 3D cross-linked N-doped carbon nanotubes encapsulated with tiny Co nanoparticles (denoted as Co@NCNTs/α-Ni(OH)2), which are directly supported on a flexible carbon cloth (CC). An aqueous Ni-Zn battery employing the hierarchical CC/Co@NCNTs/α-Ni(OH)2 as the binder-free cathode and a commercial Zn plate as the anode is fabricated, which displays an ultrahigh capacity (316 mAh g-1) and energy density (540.4 Wh kg-1) at 1 A g-1 as well as excellent rate capability (238 mAh g-1 at 10 A g-1) and superior cycling performance (about 84% capacity retention after 2000 cycles at 10 A g-1). The impressive electrochemical performance might benefit from the rich active sites, rapid electron transfer, cushy electrolyte access, rapid ion transport, and robust structural stability. In addition, the quasi-solid-state CC/Co@NCNTs/α-Ni(OH)2//Zn batteries are also successfully assembled with polymer electrolyte, indicating the great potential for portable and wearable electronics. This work might provide important guidance for constructing carbon-based hybrid materials directly supported on conductive substrates as high-performance electrodes for energy-related devices.

3.
ACS Nano ; 15(4): 6849-6860, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33769793

ABSTRACT

Developing high-performance cathode host materials is fundamental to solve the low utilization of sulfur, the sluggish redox kinetics, and the lithium polysulfide (LiPS) shuttle effect in lithium-sulfur batteries (LSBs). Here, a multifunctional Ag/VN@Co/NCNT nanocomposite with multiple adsorption and catalytic sites within hierarchical nanoreactors is reported as a robust sulfur host for LSB cathodes. In this hierarchical nanoreactor, heterostructured Ag/VN nanorods serve as a highly conductive backbone structure and provide internal catalytic and adsorption sites for LiPS conversion. Interconnected nitrogen-doped carbon nanotubes (NCNTs), in situ grown from the Ag/VN surface, greatly improve the overall specific surface area for sulfur dispersion and accommodate volume changes in the reaction process. Owing to their high LiPS adsorption ability, outer Co nanoparticles at the top of the NCNTs catch escaped LiPS, thus effectively suppressing the shuttle effect and enhancing kinetics. Benefiting from the multiple adsorption and catalytic sites of the developed hierarchical nanoreactors, Ag/VN@Co/NCNTs@S cathodes display outstanding electrochemical performances, including a superior rate performance of 609.7 mAh g-1 at 4 C and a good stability with a capacity decay of 0.018% per cycle after 2000 cycles at 2 C. These properties demonstrate the exceptional potential of Ag/VN@Co/NCNTs@S nanocomposites and approach LSBs closer to their real-world application.

4.
Chem Commun (Camb) ; 56(43): 5847-5850, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32338659

ABSTRACT

Herein, Cu-doped Co-ZIF nanoplate arrays are uniformly grown on a commercial paper towel substrate first. After a subsequent annealing treatment, well-defined Cu-doped Co/CoO nanoparticles embedded in N-doped carbon hybrid nanoplate arrays supported on the carbon paper substrate (denoted as Cu-doped Co/CoO/NC NPAs@CP) are obtained, which exhibit excellent performance as a low-cost, lightweight and binder-free anode for lithium ion storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...