Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(11): 1438-1445, 2020 Nov 15.
Article in Chinese | MEDLINE | ID: mdl-33191703

ABSTRACT

OBJECTIVE: To investigate the effects of silencing P75 neurotrophin receptor (P75NTR) and nerve growth factor (NGF) overexpression on the proliferative activity and ectopic osteogenesis ability of bone marrow mesenchymal stem cells (BMSCs) combined with demineralized bone matrix for heterotopic osteogenesis. METHODS: BMSCs of Sprague Dawley (SD) rats were cultured and passaged by adherent isolation method. The third generation BMSCs were transfected with lentivirus mediated P75NTR gene silencing (group B), NGF overexpression gene (group C), P75NTR silencing and NGF overexpression double genes (group D), respectively, and untransfected cells as control (group A). After 7 days of transfection, the expression of fluorescent protein of the target gene was observed by fluorescence microscope; cell counting kit 8 method was used to detect the cells activity for 8 days after transfection; the expressions of P75NTR and NGF proteins in each group were detected by Western blot. The adhesion of BMSCs to demineralized bone matrix (DBM) was observed by inverted phase contrast microscope and scanning electron microscope after transfection of p75NTR silencing and NGF overexpression double genes. After transfection, BMSCs and DBM were co-cultured to prepare 4 groups of tissue engineered bone, which were respectively placed in the dorsal subcutaneous tissue of 8-week-old SD rats to construct subcutaneous ectopic osteogenesis model ( n=6). HE staining was performed at 4 and 8 weeks after operation. ALP staining was used to observe the formation of calcium nodules at 8 weeks after operation. The expressions of Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were detected by real-time fluorescent quantitative PCR. RESULTS: At 7 days after transfection, there was no fluorescence expression in group A, red fluorescence expression was seen in group B, green fluorescence expression in group C, and red-green compound fluorescence expression in group D. The fluorescence expression rate of target gene was about 70%. Western blot detection showed that the relative expression of P75NTR protein in groups A and C was significantly higher than that in groups B and D, and the relative expression of NGF protein in groups C and D was significantly higher than that in groups A and B ( P<0.05). With the passage of time, the cell proliferation activity increased in all groups, especially in group D, which was significantly higher than that in group A at 3-8 days ( P<0.05). The results of inverted phase contrast microscope and scanning electron microscope showed that BMSCs could adhere well to DBM. In the subcutaneous ectopic osteogenesis experiment, HE staining showed that at 4 and 8 weeks after operation, the more bone tissue was formed in group D than in the other 3 groups. ALP staining showed that group D had the highest ALP activity and better osteogenic expression. Compared with group A, the relative expressions of Runx2, ALP, and OCN mRNAs in group D were significantly higher than those in group A ( P<0.05). CONCLUSION: Silencing P75NTR and NGF overexpression double genes co-transfected BMSCs with DBM to construct tissue engineered bone has good ectopic osteogenic ability. By increasing NGF level and closing P75NTR apoptosis channel, it can not only improve cell activity, but also promote bone tissue regeneration.


Subject(s)
Mesenchymal Stem Cells , Nerve Tissue Proteins , Receptors, Growth Factor , Animals , Bone Marrow Cells , Bone Matrix , Cell Differentiation , Cells, Cultured , Gene Silencing , Lentivirus , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Osteogenesis , Rats , Rats, Sprague-Dawley , Receptor, Nerve Growth Factor , Receptors, Growth Factor/genetics , Receptors, Growth Factor/metabolism , Transfection
2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(8): 1052-1058, 2020 Aug 15.
Article in Chinese | MEDLINE | ID: mdl-32794678

ABSTRACT

OBJECTIVE: To investigate the effect of small interfering RNA (siRNA) lentivirus-mediated silencing of P75 neurotrophin receptor (P75NTR) gene on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in rats. METHODS: Three lentivirus-mediated P75NTR gene siRNA sequences (P75NTR-siRNA-1, 2, 3) and negative control (NC)-siRNA were designed and transfected into the 3rd generation Sprague Dawley (SD) rat BMSCs. The cells morphological changes were observed under an inverted microscope, and the expressions of P75NTR gene and protein in cells were detected by real-time fluorescence quantitative PCR and Western blot. Then the best silencing P75NTR-siRNA for subsequent osteogenic differentiation experiments was screened out. The 3rd generation SD rat BMSCs were randomly divided into experimental group, negative control group, and blank control group (normal BMSCs). The BMSCs of negative control group and experimental group were transfected with NC-siRNA and the selected P75NTR-siRNA lentiviral vector, respectively. The cells of each group were cultured by osteogenic induction. The expressions of osteogenic related proteins [osteocalcin (OCN) and Runx related transcription factor 2 (Runx2)] were detected by Western blot; the collagen type Ⅰ expression was observed by immunohistochemical staining; the osteogenesis of BMSCs was observed by alkaline phosphatase (ALP) detection and alizarin red staining. RESULTS: After lentivirus-mediated P75NTR transfected into BMSCs, the expressions of P75NTR mRNA and protein significantly reduced ( P<0.05), and the best silencing P75NTR-siRNA was P75NTR-siRNA-3. After P75NTR gene was silenced, MTT test showed that the cell proliferation in the experimental group was significantly faster than those in the two control groups ( P<0.05). After osteogenic induction, the relative expressions of OCN and Runx2 proteins, collagen type Ⅰ expression, and ALP activity were significantly higher in the experimental group than in the two control groups, the differences were significant ( P<0.05). With the prolongation of osteogenic induction, the mineralized nodules in the experimental group gradually increased. CONCLUSION: Silencing the P75NTR gene with siRNA lentivirus can promote the osteogenic differentiation of rat BMSCs and provide a new idea for the treatment of bone defects.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Lentivirus , Rats , Rats, Sprague-Dawley , Receptor, Nerve Growth Factor
SELECTION OF CITATIONS
SEARCH DETAIL
...