Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894712

ABSTRACT

In this study, Cu-doped ZnO was prepared via the facile one-pot solvothermal approach. The structure and composition of the synthesized samples were characterized by XRD (X-ray diffraction), TEM (transmission electron microscopy), and XPS (X-ray photoelectron spectroscopy) analyses, revealing that the synthesized samples consisted of Cu-doped ZnO nanoparticles. Ultraviolet-visible (UV-vis) spectroscopy analysis showed that Cu-doping significantly improves the visible light absorption properties of ZnO. The photocatalytic capacity of the synthesized samples was tested via the disinfection of Escherichia coli, with the Cu-ZnO presenting enhanced disinfection compared to pure ZnO. Of the synthesized materials, 7% Cu-ZnO exhibited the best photocatalytic performance, for which the size was ~9 nm. The photocurrent density of the 7% Cu-ZnO samples was also significantly higher than that of pure ZnO. The antifungal activity for 7% Cu-ZnO was also tested on the pathogenic fungi of Fusarium graminearum. The macroconidia of F. graminearum was treated with 7% Cu-ZnO photocatalyst for 5 h, resulting in a three order of magnitude reduction at a concentration of 105 CFU/mL. Fluorescence staining tests were used to verify the survival of macroconidia before and after photocatalytic treatment. ICP-MS was used to confirm that Cu-ZnO met national standards for cu ion precipitation, indicating that Cu-ZnO are environmentally friendly materials.


Subject(s)
Nanoparticles , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Disinfection , Fungi , Escherichia coli , Catalysis
2.
Natl Sci Rev ; 10(8): nwad175, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37484999

ABSTRACT

The stacking state of atomic layers critically determines the physical properties of twisted van der Waals materials. Unfortunately, precise characterization of the stacked interfaces remains a great challenge as they are buried internally. With conductive atomic force microscopy, we show that the moiré superlattice structure formed at the embedded interfaces of small-angle twisted multilayer graphene (tMLG) can noticeably regulate surface conductivity even when the twisted interfaces are 10 atomic layers beneath the surface. Assisted by molecular dynamics (MD) simulations, a theoretical model is proposed to correlate surface conductivity with the sequential stacking state of the graphene layers of tMLG. The theoretical model is then employed to extract the complex structure of a tMLG sample with crystalline defects. Probing and visualizing the internal stacking structures of twisted layered materials is essential for understanding their unique physical properties, and our work offers a powerful tool for this via simple surface conductivity mapping.

3.
Nat Mater ; 21(6): 621-626, 2022 06.
Article in English | MEDLINE | ID: mdl-35449221

ABSTRACT

Atomic reconstruction has been widely observed in two-dimensional van der Waals structures with small twist angles1-7. This unusual behaviour leads to many novel phenomena, including strong electronic correlation, spontaneous ferromagnetism and topologically protected states1,5,8-14. Nevertheless, atomic reconstruction typically occurs spontaneously, exhibiting only one single stable state. Using conductive atomic force microscopy, here we show that, for small-angle twisted monolayer-multilayer graphene, there exist two metastable reconstruction states with distinct stacking orders and strain soliton structures. More importantly, we demonstrate that these two reconstruction states can be reversibly switched, and the switching can propagate spontaneously in an unusual domino-like fashion. Assisted by lattice-resolved conductive atomic force microscopy imaging and atomistic simulations, the detailed structure of the strain soliton networks has been identified and the associated propagation mechanism is attributed to the strong mechanical coupling among solitons. The fine structure of the bistable states is critical for understanding the unique properties of van der Waals structures with tiny twists, and the switching mechanism offers a viable means for manipulating their stacking states.


Subject(s)
Graphite , Electronics , Graphite/chemistry
4.
J Sep Sci ; 44(12): 2399-2407, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33856741

ABSTRACT

Highly hydrophilic magnetic molecularly imprinted polymers were prepared through a surface imprinting technique for dispersive solid-phase extraction coupled with high-performance liquid chromatography to detect trace levels of ten sulfonamides in animal-derived samples. The obtained imprinted polymers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and adsorption experiments, which exhibited excellent specific adsorption for template sulfamethazine in aqueous solution. Moreover, the adsorption process could be completed within 25 min. Under the optimum conditions, the method exhibits good linear performance in the range of 5-to 10 mg/L, limits of detection ranging from 0.57 to 1.50 µg/L, and good recoveries of 85.09-110.93% in the spiked samples (chicken, cow milk, and goat milk). The proposed detection method not only avoids the use of organic solvents but also simplifies the pretreatment procedure via excellent magnetic properties. Furthermore, the method shows great potential for the rapid detection of drug residues.


Subject(s)
Molecularly Imprinted Polymers/chemical synthesis , Solid Phase Extraction , Sulfonamides/chemistry , Adsorption , Animals , Cattle , Chickens , Chromatography, High Pressure Liquid , Goats , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Molecularly Imprinted Polymers/chemistry
5.
Appl Opt ; 53(15): 3267-72, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24922213

ABSTRACT

A corner cube (CC) as a peculiar coherent combination element is first, to the best of our knowledge, theoretically and experimentally proved by the authors. When a CC is used as a total-reflecting mirror in the solid-state laser resonator it can improve the laser far-field energy focalization. Furthermore, the differences between the coherent characteristics of the lasers with a corner cube resonator (CCR) and those with a Fabry-Perot resonator have been investigated, respectively. Theoretical calculation and numerical simulation have proved that the symmetric output beams of the CCR laser are coherent and the adjacent output beams are partially coherent. Based on these special coherent characteristics, a new laser coherent combining configuration, in which a CC was utilized as a total-reflecting mirror, was proposed and experimentally investigated. In our experiments, the measured far-field intensity profiles of coherent combing laser arrays are in good agreement with the numerical simulation. These novel coherent characteristics of a CC may be important for applications in solid-state lasers and laser coherent combining systems, and coherent combination may be one of the development trends and future research directions for CCR lasers.

6.
Opt Lett ; 38(23): 5150-2, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24281532

ABSTRACT

Coherent beam combination is an effective way to develop high-power lasers with high beam quality and high brightness. Coherent combination of six solid-state lasers based on the technique of mutual injection phase locking by using the natural coherent combination property of corner cube is first investigated. The coherent combination with 15.3 J of output energy, 1.7 mrad of divergent angle is obtained, and the combining efficiency is as high as 95.6% at 10 Hz and 85 A. The far-field profile is flattened protuberance.

SELECTION OF CITATIONS
SEARCH DETAIL
...