Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Diagnostics (Basel) ; 14(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38893717

ABSTRACT

Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classification. However, when using the infinite series, the Caputo definition has memory length truncation issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization. We conducted experiments integrating various feature extraction techniques, including histograms of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and VGG19, to create a unified vector. We evaluate the informative features selected from the proposed method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the diversity and quantity of the training set. The proposed method enhances convergence speed and the attainment of optimal solutions during training. The results demonstrate superior performance on the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36% sensitivity, and 85.00% Matthew's correlation coefficient. The results confirm the efficiency of the proposed method, rendering it a generalizable and applicable technique in ophthalmology.

2.
Article in English | MEDLINE | ID: mdl-36378800

ABSTRACT

Echocardiography is an essential procedure for the prenatal examination of the fetus for congenital heart disease (CHD). Accurate segmentation of key anatomical structures in a four-chamber view is an essential step in measuring fetal growth parameters and diagnosing CHD. Currently, most obstetricians perform segmentation tasks manually, but the pixel-level operation is labor-intensive and requires extensive anatomical knowledge and clinical experience. As such, efficiently and accurately detecting structures from real-world fetal ultrasound images is a key challenge. In this paper, we propose a YOLOX-based deep instance segmentation neural network (i.e., IS-YOLOX) for cardiac anatomical structure location and segmentation in fetal ultrasound images. Specifically, we reconstruct a new instance segmentation branch based on a multi-task deep learning framework. We then design a new multi-level non-maximum suppression (NMS) mechanism to further improve the segmentation performance that consists of three levels of selection. Moreover, unlike two-stage instance segmentation approaches, our method does not rely on object detection results. To the best of our knowledge, this is the first study regarding instance segmentation on 13 types of anatomical structures in the fetal four-chamber view. Extensive experiments were carried out on clinical datasets, and the experimental results show that our method outperforms nine competitive baselines.

3.
IEEE J Biomed Health Inform ; 26(11): 5540-5550, 2022 11.
Article in English | MEDLINE | ID: mdl-35700244

ABSTRACT

The apical four-chamber (A4C) view in fetal echocardiography is a prenatal examination widely used for the early diagnosis of congenital heart disease (CHD). Accurate segmentation of A4C key anatomical structures is the basis for automatic measurement of growth parameters and necessary disease diagnosis. However, due to the ultrasound imaging arising from artefacts and scattered noise, the variability of anatomical structures in different gestational weeks, and the discontinuity of anatomical structure boundaries, accurately segmenting the fetal heart organ in the A4C view is a very challenging task. To this end, we propose to combine an explicit Feature Pyramid Network (FPN), MobileNet and UNet, i.e., MobileUNet-FPN, for the segmentation of 13 key heart structures. To our knowledge, this is the first AI-based method that can segment so many anatomical structures in fetal A4C view. We split the MobileNet backbone network into four stages and use the features of these four phases as the encoder and the upsampling operation as the decoder. We build an explicit FPN network to enhance multi-scale semantic information and ultimately generate segmentation masks of key anatomical structures. In addition, we design a multi-level edge computing system and deploy the distributed edge nodes in different hospitals and city servers, respectively. Then, we train the MobileUNet-FPN model in parallel at each edge node to effectively reduce the network communication overhead. Extensive experiments are conducted and the results show the superior performance of the proposed model on the fetal A4C and femoral-length images.


Subject(s)
Image Processing, Computer-Assisted , Semantics , Pregnancy , Female , Humans , Image Processing, Computer-Assisted/methods , Ultrasonography, Prenatal , Ultrasonography , Fetal Heart/diagnostic imaging
4.
PeerJ Comput Sci ; 7: e694, 2021.
Article in English | MEDLINE | ID: mdl-34616885

ABSTRACT

The emergence of the novel coronavirus pneumonia (COVID-19) pandemic at the end of 2019 led to worldwide chaos. However, the world breathed a sigh of relief when a few countries announced the development of a vaccine and gradually began to distribute it. Nevertheless, the emergence of another wave of this pandemic returned us to the starting point. At present, early detection of infected people is the paramount concern of both specialists and health researchers. This paper proposes a method to detect infected patients through chest x-ray images by using the large dataset available online for COVID-19 (COVIDx), which consists of 2128 X-ray images of COVID-19 cases, 8,066 normal cases, and 5,575 cases of pneumonia. A hybrid algorithm is applied to improve image quality before undertaking neural network training. This algorithm combines two different noise-reduction filters in the image, followed by a contrast enhancement algorithm. To detect COVID-19, we propose a novel convolution neural network (CNN) architecture called KL-MOB (COVID-19 detection network based on the MobileNet structure). The performance of KL-MOB is boosted by adding the Kullback-Leibler (KL) divergence loss function when trained from scratch. The KL divergence loss function is adopted for content-based image retrieval and fine-grained classification to improve the quality of image representation. The results are impressive: the overall benchmark accuracy, sensitivity, specificity, and precision are 98.7%, 98.32%, 98.82% and 98.37%, respectively. These promising results should help other researchers develop innovative methods to aid specialists. The tremendous potential of the method proposed herein can also be used to detect COVID-19 quickly and safely in patients throughout the world.

5.
Int J Biomed Imaging ; 2021: 8828404, 2021.
Article in English | MEDLINE | ID: mdl-34194484

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is a contagious disease that has caused thousands of deaths and infected millions worldwide. Thus, various technologies that allow for the fast detection of COVID-19 infections with high accuracy can offer healthcare professionals much-needed help. This study is aimed at evaluating the effectiveness of the state-of-the-art pretrained Convolutional Neural Networks (CNNs) on the automatic diagnosis of COVID-19 from chest X-rays (CXRs). The dataset used in the experiments consists of 1200 CXR images from individuals with COVID-19, 1345 CXR images from individuals with viral pneumonia, and 1341 CXR images from healthy individuals. In this paper, the effectiveness of artificial intelligence (AI) in the rapid and precise identification of COVID-19 from CXR images has been explored based on different pretrained deep learning algorithms and fine-tuned to maximise detection accuracy to identify the best algorithms. The results showed that deep learning with X-ray imaging is useful in collecting critical biological markers associated with COVID-19 infections. VGG16 and MobileNet obtained the highest accuracy of 98.28%. However, VGG16 outperformed all other models in COVID-19 detection with an accuracy, F1 score, precision, specificity, and sensitivity of 98.72%, 97.59%, 96.43%, 98.70%, and 98.78%, respectively. The outstanding performance of these pretrained models can significantly improve the speed and accuracy of COVID-19 diagnosis. However, a larger dataset of COVID-19 X-ray images is required for a more accurate and reliable identification of COVID-19 infections when using deep transfer learning. This would be extremely beneficial in this pandemic when the disease burden and the need for preventive measures are in conflict with the currently available resources.

6.
IEEE J Biomed Health Inform ; 25(10): 3812-3823, 2021 10.
Article in English | MEDLINE | ID: mdl-34057900

ABSTRACT

To accurately detect and track the thyroid nodules in a video is a crucial step in the thyroid screening for identification of benign and malignant nodules in computer-aided diagnosis (CAD) systems. Most existing methods just perform excellent on static frames selected manually from ultrasound videos. However, manual acquisition is labor-intensive work. To make the thyroid screening process in a more natural way with less labor operations, we develop a well-designed framework suitable for practical applications for thyroid nodule detection in ultrasound videos. Particularly, in order to make full use of the characteristics of thyroid videos, we propose a novel post-processing approach, called Cache-Track, which exploits the contextual relation among video frames to propagate the detection results into adjacent frames to refine the detection results. Additionally, our method can not only detect and count thyroid nodules, but also track and monitor surrounding tissues, which can greatly reduce the labor work and achieve computer-aided diagnosis. Experimental results show that our method performs better in balancing accuracy and speed.


Subject(s)
Thyroid Nodule , Diagnosis, Computer-Assisted , Humans , Thyroid Nodule/diagnostic imaging , Ultrasonography
7.
IEEE Trans Cybern ; 51(11): 5585-5594, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32452796

ABSTRACT

It is known that the Pareto-based approach is not well suited for optimization problems with a large number of objectives, even though it is a class of mainstream methods in multiobjective optimization. Typically, a Pareto-based algorithm comprises two parts: 1) a Pareto dominance-based criterion and 2) a diversity estimator. The former guides the selection toward the optimal front, while the latter promotes the diversity of the population. However, the Pareto dominance-based criterion becomes ineffective in solving optimization problems with many objectives (e.g., more than 3) and, thus, the diversity estimator will determine the performance of the algorithm. Unfortunately, the diversity estimator usually has a strong bias toward dominance resistance solutions (DRSs), thereby failing to push the population forward. DRSs are solutions that are far away from the Pareto-optimal front but cannot be easily dominated. In this article, we propose a new Pareto-based algorithm to resolve the above issue. First, to eliminate the DRSs, we design an interquartile range method to preprocess the solution set. Second, to balance convergence and diversity, we present a penalty mechanism of alternating operations between selection and penalty. The proposed algorithm is compared with five state-of-the-art algorithms on a number of well-known benchmarks with 3-15 objectives. The experimental results show that the proposed algorithm can perform well on most of the test functions and generally outperforms its competitors.

8.
Chemistry ; 22(31): 11028-34, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27374725

ABSTRACT

The folding and aggregation behavior of a pair of oligo(phenylene ethynylene) (OPE) foldamers are investigated by means of UV/Vis absorption and circular dichroism spectroscopy. With identical OPE backbones, two foldamers, 1 with alkyl side groups and 2 with triethylene glycol side chains, manifest similar helical conformations in solutions in n-hexane and methanol, respectively. However, disparate and competing folding and aggregation processes are observed in alternative solvents. In cyclohexane, oligomer 1 initially adopts the helical conformation, but the self-aggregation of unfolded chains, as a minor component, gradually drives the folding-unfolding transition eventually to the unfolded aggregate state completely. In contrast, in aqueous solution (CH3 OH/H2 O) both folded and unfolded oligomer 2 appear to undergo self-association; aggregates of the folded chains are thermodynamically more stable. In solutions with a high H2 O content, self-aggregation among unfolded oligomers is kinetically favored; these oligomers very slowly transform into aggregates of helical structures with greater thermodynamic stability. The folded-unfolded conformational switch thus takes place with the free (nonaggregated) molecules, and the very slow folding transition is due to the low concentration of molecularly dispersed oligomers.

9.
Nanoscale ; 6(13): 7221-5, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24882519

ABSTRACT

Macrocycle-1 molecules can self-assemble into glassy state networks via van der Waals force and form many triangular nanopores in networks. The nanopores can be expressed by triangular tilings, which lead to a particularly rich range of arrangements. Moreover an interesting molecular rotation phenomenon was observed in the glassy networks.

11.
Chem Asian J ; 7(10): 2386-93, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22829335

ABSTRACT

As a representative folding system that features a conjugated backbone, a series of monodispersed (o-phenyleneethynylene)-alt-(p-phenyleneethynylene) (PE) oligomers of varied chain length and different side chains were studied. Molecules with the same backbone but different side-chain structures were shown to exhibit similar helical conformations in respectively suitable solvents. Specifically, oligomers with dodecyloxy side chains folded into the helical structure in apolar aliphatic solvents, whereas an analogous oligomer with tri(ethylene glycol) (Tg) side chains adopted the same conformation in polar solvents. The fact that the oligomers with the same backbone manifested a similar folded conformation independent of side chains and the nature of the solvent confirmed the concept that the driving force for folding was the intramolecular aromatic stacking and solvophobic interactions. Although all were capable of inducing folding, different solvents were shown to bestow slightly varied folding stability. The chain-length dependence study revealed a nonlinear correlation between the folding stability with backbone chain length. A critical size of approximately 10 PE units was identified for the system, beyond which folding occurred. This observation corroborated the helical nature of the folded structure. Remarkably, based on the absorption and emission spectra, the effective conjugation length of the system extended more effectively under the folded state than under random conformations. Moreover, as evidenced by the optical spectra and dynamic light-scattering studies, intermolecular association took place among the helical oligomers with Tg side chains in aqueous solution. The demonstrated ability of such a conjugated foldamer in self-assembling into hierarchical supramolecular structures promises application potential for the system.


Subject(s)
Alkynes/chemistry , Ethers/chemistry , Polymers/chemistry , Solvents/chemistry , Polymers/chemical synthesis , Spectrophotometry, Ultraviolet
12.
Chemistry ; 17(25): 7061-8, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21557347

ABSTRACT

The unfolding process and self-assembly of a foldable oligomer (foldamer 1) at the liquid/graphite interface were investigated by scanning tunnelling microscopy. At the level of molecular conformation, we identified several molecular conformations (A(z), B, C, D, E) that represent intermediate states during unfolding, which may help to elucidate the unfolding process at the liquid/graphite interface. Adsorption at the interface traps the intermediate states of the unfolding process, and STM has proved to be a powerful technique for investigating folding and unfolding of a foldamer at the molecular level, which are not accessible by other methods. The STM observations also revealed that varying the solvent and/or concentration results in different self-assemblies of foldamer 1 as a result of variations in molecular conformations. The solvent and concentration effects were attributed to the changes in existing states (extended or folded) of foldamers in solution, which in turn affect the distribution of adsorbed molecular conformations at the interface. This mechanism is quite different from other systems in which solvent and concentration effects were also observed.

13.
Chem Commun (Camb) ; 46(31): 5725-7, 2010 Aug 21.
Article in English | MEDLINE | ID: mdl-20593084

ABSTRACT

Crystalline microwires of a phenyleneethynylene (PE) macrocycle self-assembled from solution exhibited superior photoconductive properties. Photoswitches fabricated with single wires afforded nA-scale photocurrents with on/off ratios of ca. 10(3). At a bias of 30 volts highest gain value achieved was up to 4.5. The stable and rapid responses to light qualify these microwire-based devices for excellent photoswitches or photodetectors.

14.
Org Lett ; 10(19): 4283-6, 2008 Oct 02.
Article in English | MEDLINE | ID: mdl-18778081

ABSTRACT

An oligo( o-phenyleneethynylene- alt- p-phenyleneethynylene) was synthesized to create a conjugated molecule capable of adopting a helical secondary structure. A special feature of such a folded molecule is that the effective directions of energy/charge transport via covalent conjugation and through pi-pi stacking are converged to be along the helix axis. The transition from random conformations to the helix, driven by solvophobic and aromatic stacking interactions, was controlled by solvent properties. UV-vis and fluorescence spectroscopies gave supportive evidence for the folding process.


Subject(s)
Alkynes/chemistry , Benzene Derivatives/chemistry , Polymers/chemistry , Models, Molecular , Molecular Conformation , Spectrophotometry, Ultraviolet
15.
Org Lett ; 10(13): 2669-72, 2008 Jul 03.
Article in English | MEDLINE | ID: mdl-18507389

ABSTRACT

A series of monodispersed oligo( p-phenyleneethynylene)s were synthesized bearing intramolecular hydrogen bonds between side chains of adjacent phenylene units in the backbone. Thus, all repeating units of the molecules are constrained in a coplanar orientation. Such planarized conformation is considered favorable for single-molecule conductance. Photophysical characterization results show narrowed bandgaps and extended conjugation lengths, consistent with a rigid, planar backbone framework as a result of intramolecular hydrogen bonding.

SELECTION OF CITATIONS
SEARCH DETAIL
...