Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Periodontal Res ; 57(1): 195-204, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34773653

ABSTRACT

BACKGROUND AND OBJECTIVES: Periodontitis is a chronic inflammatory disease of periodontal supporting tissues. The persistent inflammatory reaction depends on the release of chemokines to continuously recruit inflammation cells. GATA-binding protein 4 (GATA4) exerts effects on senescence and inflammation, while its role in periodontitis is far from clear. The present study aims to address the effect of GATA4 on regulating chemokines and the chemotaxis in periodontitis. MATERIAL AND METHODS: Periodontitis rat models were constructed to detect the expression of GATA4 and the chemokine monocyte chemoattractant protein-1 (MCP-1) by immunohistochemistry. Lipopolysaccharide (LPS)-stimulated human periodontal ligament (PDL) cells and GATA4-knockdown by siRNA transient transfection PDL cells were used to explore the correlation between GATA4 and chemokines. Transwell assay was performed to detect the role of GATA4 for the recruitment effect of chemokines on macrophages. Mitogen-activated protein kinase (MAPK) inhibitors were scheduled to intervene in LPS-stimulated PDL cells to examine the association between MAPK signaling pathways and GATA4. The expression of GATA4, chemokines, or MAPK signaling molecules was determined by quantitative real-time polymerase chain reaction, western blotting, or cell immunofluorescence. RESULTS: The expression of GATA4 and MCP-1 was significantly increased in periodontitis rat models and in LPS-stimulated PDL cells. Knockdown GATA4 inhibited the expression of GATA4 and MCP-1 as well as suppressed the recruitment of macrophage in LPS-stimulated PDL cells. Inhibitors of p38 and ERK1/2 signaling pathways significantly downregulated the increased expression of GATA4 and MCP-1 induced by LPS in PDL cells. CONCLUSIONS: GATA-binding protein 4 could act as an upstream regulator of MCP-1 and as a downstream regulator of p38 and ERK1/2 signaling pathways to initiate inflammation response and regulate chemotaxis during the progression of periodontitis.


Subject(s)
Chemokine CCL2 , Chemotaxis , GATA4 Transcription Factor/metabolism , Periodontal Ligament , Animals , Cells, Cultured , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Lipopolysaccharides , Periodontal Ligament/cytology , Rats , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
2.
J Cell Biochem ; 121(8-9): 3700-3710, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31709625

ABSTRACT

Peroxisome proliferator activated receptor γ (PPARγ) is a member of the nuclear receptor family of transcription factors, which involved in inflammation regulating and bone remodeling. Rare studies explored the effects of PPARγ on mineralization and differentiation in cementoblasts. To explore the potential approaches to repair the damaged periodontal tissues especially for cementum, the present study aims to investigate the effects and the regulating mechanism of PPARγ on mineralization and differentiation in cementoblasts. Murine cementoblast cell lines (OCCM-30) were cultured in basic medium for 24 hours/48 hours or in mineralization medium for 3/7/10 days, respectively at addition of dimethyl sulphoxide, rosiglitazone (PPARγ agonist), GW9662 (PPARγ antagonist), lithium chloride (LiCl), tumor necrosis factor-α (TNF-α), or respective combination. Expression of mineralization genes alkaline phosphatase (ALP), runt related transcription factors 2 (RUNX2), and osteocalcin (OCN) were detected by quantitative real-time polymerase chain reaction or/and Western blot. ALP staining and alizarin red staining were used to evaluate the mineralization in OCCM-30 cells. The change of ß-catenin expression and translocation in cytoplasm/nucleus was analyzed by Western blot and immunofluorescence. The results showed that PPARγ agonist rosiglitazone improved the expression of ALP, RUNX2, and OCN, deepened ALP staining, increased mineralized nodules formation, and decreased ß-catenin expression in the nucleus. LiCl, an activator of the Wnt signaling pathway, inhibited the expression of mineralization genes and reversed the upregulated expression of mineralization genes resulted from rosiglitazone. Under inflammatory microenvironment, rosiglitazone not only suppressed the expression of interleukin-1ß caused by TNF-α, but improved the expression of mineralization genes in OCCM-30 cells. In conclusion, PPARγ could promote mineralization and differentiation in cementoblasts via inhibiting the Wnt/ß-catenin signaling pathway, which would shed new light on the treatment of periodontitis and periodontal tissue regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...