Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Biosci Bioeng ; 129(3): 269-275, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31594693

ABSTRACT

In vitro metabolic engineering is an emerging framework for bioproduction systems, in which synthetic metabolic pathways are constructed using a limited number of enzymes. Employment of thermophilic enzymes as catalytic elements in pathways enables the use of simple heat purification of recombinantly expressed enzymes. However, thermophilic enzymes are generally incompatible with thermo-labile substrates and intermediates. In previous work, we showed that lactate production through a non-ATP forming chimeric Embden-Meyerhof (EM) pathway required careful adjustment of the metabolic fluxes by continuous substrate feeding and optimization of enzyme ratios to prevent the accumulation and degradation of thermo-labile intermediates (Ye et al., Microb. Cell Fact., 11, 120, 2012). In the study reported here, we constructed an in vitro non-phosphorylative Entner-Doudoroff (np-ED) pathway. Because of the high thermal stability of the metabolic intermediates in the np-ED pathway, it could prevent degradation of accumulated metabolic intermediates caused by inconstant metabolic fluxes, and batch-mode production of lactate in which the concentrations of the substrate and metabolic intermediates change dynamically could be achieved. By combining the enzymes involved in the np-ED pathway and lactate dehydrogenase, 20.9 mM lactate was produced from 10 mM glucose and 1 mM gluconate in 6 h.


Subject(s)
Lactic Acid/metabolism , Gluconates/metabolism , Glucose/metabolism , Glycolysis , Metabolic Networks and Pathways , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...