Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Biol ; 52(8): 1052-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24601951

ABSTRACT

CONTEXT: Oxysophocarpine (OSC), a quinolizidine alkaloid extracted from leguminous plants of the genus Robinia, is traditionally used for various diseases including neuronal disorders. OBJECTIVE: This study investigated the protective effects of OSC on neonatal rat primary-cultured hippocampal neurons were injured by oxygen-glucose deprivation and reperfusion (OGD/RP). MATERIALS AND METHODS: Cultured hippocampal neurons were exposed to OGD for 2 h followed by a 24 h RP. OSC (1, 2, and 5 µmol/L) and nimodipine (Nim) (12 µmol/L) were added to the culture after OGD but before RP. The cultures of the control group were not exposed to OGD/RP. MTT and LDH assay were used to evaluate the protective effects of OSC. The concentration of intracellular-free calcium [Ca(2+)]i and mitochondrial membrane potential (MMP) were determined to evaluate the degree of neuronal damage. Morphologic changes of neurons following OGD/RP were observed with a microscope. The expression of caspase-3 and caspase-12 mRNA was examined by real-time quantitative PCR. RESULTS: The IC50 of OSC was found to be 100 µmol/L. Treatment with OSC (1, 2, and 5 µmol/L) attenuated neuronal damage (p < 0.001), with evidence of increased cell viability (p < 0.001) and decreased cell morphologic impairment. Furthermore, OSC increased MMP (p < 0.001), but it inhibited [Ca(2+)]i (p < 0.001) elevation in a dose-dependent manner at OGD/RP. OSC (5 µmol/L) also decreased the expression of caspase-3 (p < 0.05) and caspase-12 (p < 0.05). DISCUSSION AND CONCLUSION: The results suggested that OSC has significant neuroprotective effects that can be attributed to inhibiting endoplasmic reticulum (ER) stress-induced apoptosis.


Subject(s)
Alkaloids/pharmacology , Glucose/metabolism , Hippocampus/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Oxygen/metabolism , Animals , Animals, Newborn , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cells, Cultured , Hippocampus/cytology , Hippocampus/metabolism , Neurons/cytology , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...