Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Opt Express ; 27(25): 36625-36636, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31873437

ABSTRACT

We propose and experimentally demonstrate a self-homodyne locking method for a silicon microring resonator (MRR). The device employs a self-homodyne detection structure and consists of a tunable MRR with two directional couplers along the ring for monitoring, two phase shifters to calibrate the phase difference between the two monitored optical signals, and a Y-branch to combine the two signals. A single photodetector is used to detect the output power of the Y-branch. If the MRR is on resonance, a destructive interference occurs in the Y-branch, therefore the monitored photocurrent is minimized. By using such a device structure and the homodyne detection scheme, the MRR with a Q factor of 1.9 × 104 can be accurately locked to the signal wavelength, and the locking process is insensitive to input power variation. The wavelength locking range is larger than one free spectral range (FSR) of 6 nm, and the locking errors are ≤0.015 nm.

2.
ACS Med Chem Lett ; 10(8): 1128-1133, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31413796

ABSTRACT

Diacylglycerol O-acyltransferase 1 (DGAT1) inhibitor Pradigastat (1) was shown to be effective at decreasing postprandial triglyceride levels in a patient population with familial chylomicronemia syndrome (FCS). Although pradigastat does not cause photosensitization in humans at the high clinical dose of 40 mg, a positive signal was observed in preclinical models of phototoxicity. Herein, we describe a preclinical phototoxicity mitigation strategy for diarylamine containing molecules utilizing the introduction of an amide or suitable heterocyclic function. This strategy led to the development of two second-generation compounds with low risk of phototoxicity, disparate exposure profiles, and comparable efficacy to 1 in a rodent lipid bolus model for post-prandial plasma triglycerides.

3.
mSphere ; 4(4)2019 07 03.
Article in English | MEDLINE | ID: mdl-31270174

ABSTRACT

Penicillin-binding proteins (PBPs) are essential for bacterial cell wall biosynthesis, and several are clinically validated antibacterial targets of ß-lactam antibiotics. We identified mutations in the mrdA gene encoding the PBP2 protein in two Escherichia coliblaNDM-1 clinical isolates that reduce susceptibility to carbapenems and to the intrinsic antibacterial activity of a diazabicyclooctane (DBO) PBP2 and ß-lactamase inhibitor. These mutations coexisted with previously described mutations in ftsI (encoding PBP3) that reduce susceptibility to monobactams, penicillins, and cephalosporins. Clinical exposure to ß-lactams is driving the emergence of multifactorial resistance that may impact the therapeutic usefulness of existing antibacterials and novel compounds that target PBPs.IMPORTANCE Emerging antibacterial resistance is a consequence of the continued use of our current antibacterial therapies, and it is limiting their utility, especially for infections caused by multidrug-resistant isolates. ß-Lactams have enjoyed extensive clinical success, but their broad usage is linked to perhaps the most extensive and progressive example of resistance development for any antibacterial scaffold. In Gram-negative pathogens, this largely involves constant evolution of new ß-lactamases able to degrade successive generations of this scaffold. In addition, more recently, alterations in the targets of these compounds, penicillin-binding proteins (PBPs), are being described in clinical isolates, which often also have multiple ß-lactamases. This study underscores the multifactorial nature of ß-lactam resistance by uncovering alterations of PBP2 that reduce susceptibility to carbapenems in E. coli clinical isolates that also have alterations of PBP3 and express the NDM-1 ß-lactamase. The changes in PBP2 also reduced susceptibility to the intrinsic antibacterial activity of some diazabicyclooctane (DBO) compounds that can target PBP2. This may have implications for the development and use of the members of this relatively newer scaffold that are inhibitors of PBP2 in addition to their inhibition of serine-ß-lactamases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Carbapenems/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Penicillin-Binding Proteins/genetics , Peptidoglycan Glycosyltransferase/genetics , Azabicyclo Compounds/chemistry , Microbial Sensitivity Tests , Mutation , beta-Lactam Resistance , beta-Lactamases/genetics , beta-Lactams/pharmacology
4.
Opt Express ; 27(9): 12794-12805, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31052815

ABSTRACT

We propose and experimentally demonstrate a multiple input multiple output - artificial neural network (MIMO-ANN) nonlinear equalizer (NLE) to process the complex quadrature amplitude modulation (QAM) signal in a single-sideband (SSB) self-coherent detection (SCD) system. In the proposed scheme, a 2-by-2 MIMO structure with two ANNs is employed to effectively mitigate the signal distortions induced by in-phase and quadrature (IQ) imbalance and fiber nonlinear effects. By using the proposed MIMO-ANN NLE, we successfully transmit a 112-Gb/s SSB 16-QAM signal over a single-span 120-km single mode fiber (SMF) in a direct detection (DD) system with a bit error rate (BER) lower than 3.8 × 10-3. We also conduct a comparative study between the proposed MIMO-ANN NLE, a feedforward equalizer (FFE), a NLE consisting of two independent real-valued Volterra filters, and a MIMO-Volterra filter. The proposed MIMO-ANN NLE outperforms other equalizers with the longer fiber length and thus stronger nonlinearities, since it can easily approximate a complicated nonlinear function. To the best of our knowledge, this is the first experimental demonstration of an ANN-based equalizer in an SSB SCD system.

5.
Opt Lett ; 43(18): 4518-4521, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30211905

ABSTRACT

Energy-efficient tunability is highly desired for silicon photonic devices. We demonstrate a thermo-optic tunable filter with an ultra-high tuning efficiency based on a suspended photonic crystal nanobeam cavity. Attributed to the ultra-small mode volume and free-standing waveguide structure, a tuning efficiency of 21 nm/mW is achieved over a wide single-resonance tuning range of ∼43.9 nm. The 10%-90% switching times are 67.0 µs and 68.8 µs for the rising edge and the falling edge, respectively. The demonstrated energy-efficient tunable device can find applications in reconfigurable photonic integrated circuits.

6.
Bioorg Med Chem Lett ; 28(4): 748-755, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29336873

ABSTRACT

Metallo-ß-lactamases (MBLs), such as New Delhi metallo-ß-lactamase (NDM-1) have spread world-wide and present a serious threat. Expression of MBLs confers resistance in Gram-negative bacteria to all classes of ß-lactam antibiotics, with the exception of monobactams, which are intrinsically stable to MBLs. However, existing first generation monobactam drugs like aztreonam have limited clinical utility against MBL-expressing strains because they are impacted by serine ß-lactamases (SBLs), which are often co-expressed in clinical isolates. Here, we optimized novel monobactams for stability against SBLs, which led to the identification of LYS228 (compound 31). LYS228 is potent in the presence of all classes of ß-lactamases and shows potent activity against carbapenem-resistant isolates of Enterobacteriaceae (CRE).


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Carbapenem-Resistant Enterobacteriaceae/drug effects , Monobactams/pharmacology , beta-Lactam Resistance/drug effects , beta-Lactamases/metabolism , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Aztreonam/pharmacology , CHO Cells , Cricetulus , Drug Stability , Escherichia coli/drug effects , Female , Humans , Meropenem , Mice , Microbial Sensitivity Tests , Molecular Structure , Monobactams/adverse effects , Monobactams/chemistry , Monobactams/metabolism , Pseudomonas aeruginosa/drug effects , Receptors, GABA-A/metabolism , Seizures/chemically induced , Structure-Activity Relationship , Thienamycins/pharmacology
7.
Opt Express ; 25(16): 19479-19486, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041141

ABSTRACT

We propose and experimentally demonstrate an ultra-compact silicon photonic crystal nanobeam (PCN) cavity with an energy-efficient graphene micro-heater. Owing to the PCN cavity with an ultra-small optical mode volume of 0.145 µm3, the light-matter interaction is greatly enhanced and the thermo-optic (TO) tuning efficiency is increased. The TO tuning efficiency is measured to be as high as 1.5 nm/mW, which can be further increased to 3.75 nm/mW based on numerical simulations with an optimized structure. The time constants with a rise time constant of τrise = 1.11 µs and a fall time constant of τfall = 1.47 µs are obtained in the experiment.

8.
PLoS One ; 9(1): e84330, 2014.
Article in English | MEDLINE | ID: mdl-24465405

ABSTRACT

The evolutionary history of living species is usually inferred through the phylogenetic analysis of molecular and morphological information using various mathematical models. New challenges in phylogenetic analysis are centered mostly on the search for accurate and efficient methods to handle the huge amounts of sequence data generated from newer genome sequencing. The next major challenge is the determination of relationships between the evolution of structural elements and their functional implementation, which is largely ignored in previous analyses. Here, we described the discovery of structural elements in metazoan mitochondrial genomes, termed key K-strings, that can serve as a basis for phylogenetic tree construction. Although comprising only a small fraction (0.73%) of all K-strings, these key K-strings are pivotal to the tree construction because they allow for a significant reduction in the computational time required to construct phylogenetic trees, and more importantly, they make significant improvement to the results of phylogenetic inference. The trees constructed from the key K-strings were consistent overall to our current view of metazoan phylogeny and exhibited a more rational topology than the trees constructed by using other conventional methods. Surprisingly, the key K-strings tended to accumulate in the conserved regions of the original sequences, which were most likely due to strong selection pressure. Furthermore, the special structural features of the key K-strings should have some potential applications in the study of the structures and functions relationship of proteins and in the determination of evolutionary trajectory of species. The novelty and potential importance of key K-strings lead us to believe that they are essential evolutionary elements. As such, they may play important roles in the process of species evolution and their physical existence. Further studies could lead to discoveries regarding the relationship between evolution and processes of speciation.


Subject(s)
Genome, Mitochondrial/genetics , Animals , DNA, Mitochondrial/genetics , Evolution, Molecular , Phylogeny
9.
J Med Chem ; 55(5): 2376-87, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22315981

ABSTRACT

Clostridium difficile (C. difficile) is a Gram positive, anaerobic bacterium that infects the lumen of the large intestine and produces toxins. This results in a range of syndromes from mild diarrhea to severe toxic megacolon and death. Alarmingly, the prevalence and severity of C. difficile infection are increasing; thus, associated morbidity and mortality rates are rising. 4-Aminothiazolyl analogues of the antibiotic natural product GE2270 A (1) were designed, synthesized, and optimized for the treatment of C. difficile infection. The medicinal chemistry effort focused on enhancing aqueous solubility relative to that of the natural product and previous development candidates (2, 3) and improving antibacterial activity. Structure-activity relationships, cocrystallographic interactions, pharmacokinetics, and efficacy in animal models of infection were characterized. These studies identified a series of dicarboxylic acid derivatives, which enhanced solubility/efficacy profile by several orders of magnitude compared to previously studied compounds and led to the selection of LFF571 (4) as an investigational new drug for treating C. difficile infection.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Clostridioides difficile/drug effects , Enterocolitis, Pseudomembranous/drug therapy , Thiazoles/chemical synthesis , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Cricetinae , Crystallography, X-Ray , Enterococcus/drug effects , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/chemistry , Female , Male , Mesocricetus , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Peptide Elongation Factor Tu/antagonists & inhibitors , Peptide Elongation Factor Tu/chemistry , Rats , Rats, Sprague-Dawley , Solubility , Staphylococcus aureus/drug effects , Streptococcus pyogenes/drug effects , Structure-Activity Relationship , Thiazoles/pharmacokinetics , Water
10.
Bioorg Med Chem Lett ; 21(5): 1447-51, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21300545

ABSTRACT

The synthesis and preliminary studies of the SAR of novel 3,5-diarylazole inhibitors of Protein Kinase D (PKD) are reported. Notably, optimized compounds in this class have been found to be active in cellular assays of phosphorylation-dependant HDAC5 nuclear export, orally bioavailable, and highly selective versus a panel of additional putative histone deacetylase (HDAC) kinases. Therefore these compounds could provide attractive tools for the further study of PKD/HDAC5 signaling.


Subject(s)
Azoles/pharmacology , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Azoles/chemical synthesis , Azoles/chemistry , Azoles/pharmacokinetics , Biological Availability , Histone Deacetylases/metabolism , Inhibitory Concentration 50 , Molecular Structure , Protein Kinase C/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Rats , Rats, Sprague-Dawley , Signal Transduction , Structure-Activity Relationship
11.
J Med Chem ; 53(15): 5422-38, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20684592

ABSTRACT

The synthesis and biological evaluation of potent and selective PKD inhibitors are described herein. The compounds described in the present study selectively inhibit PKD among other putative HDAC kinases. The PKD inhibitors of the present study blunt phosphorylation and subsequent nuclear export of HDAC4/5 in response to diverse agonists. These compounds further establish the central role of PKD as an HDAC4/5 kinase and enhance the current understanding of cardiac myocyte signal transduction. The in vivo efficacy of a representative example compound on heart morphology is reported herein.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Aminopyridines/chemical synthesis , Naphthyridines/chemical synthesis , Piperazines/chemical synthesis , Protein Kinase C/antagonists & inhibitors , 2,2'-Dipyridyl/chemical synthesis , 2,2'-Dipyridyl/pharmacokinetics , 2,2'-Dipyridyl/pharmacology , Active Transport, Cell Nucleus , Administration, Oral , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Cardiomegaly/drug therapy , Cardiomegaly/enzymology , Cardiomegaly/pathology , Cell Nucleus/metabolism , Histone Deacetylases/metabolism , Isoenzymes/antagonists & inhibitors , Male , Models, Molecular , Muscle Cells/drug effects , Muscle Cells/metabolism , Muscle Cells/pathology , Myocardium/metabolism , Myocardium/pathology , Naphthyridines/pharmacokinetics , Naphthyridines/pharmacology , Phosphorylation , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Binding , Rats , Rats, Inbred Dahl , Rats, Sprague-Dawley , Structure-Activity Relationship
12.
J Am Chem Soc ; 131(26): 9148-9, 2009 Jul 08.
Article in English | MEDLINE | ID: mdl-19534465

ABSTRACT

Calcium carbonate nanoparticles are one of the most economical nanomaterials. However, the ease of agglomeration and lack of functionalities are obstacles to their widespread application. Here we report the preparation and characterization of the solvent-free fluids based on rhombohedral nanoparticles of calcium carbonate, with a soft organic shell on the inorganic particle surface. For the first time, solvent-free fluids based on an inorganic salt are demonstrated. The fluidity of this nanosystem derived from the soft shell will be of great value for processability, manipulation, and ease of dispersion. Moreover, the solvent-free fluids are intrinsically conductive, which is a new functionality for calcium carbonate nanoparticles. The core/shell structure is clearly revealed by the high-resolution transmission electron microscopy images, and this verifies the presumed structure of this family of functionalized nanostructures.

14.
Bioorg Med Chem Lett ; 15(8): 1973-7, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15808450

ABSTRACT

A series of aminobenzimidazole-substituted pyrimidines were synthesized and evaluated for biochemical activity against CDK1. A high-speed parallel synthesis approach enabled the identification of a potent lead series having improved potency in the CDK1 assay (IC(50)<10nM). Cell cycle analysis showed that the compounds induced a G2/M block. Docking studies were carried out with a CDK1 homology model, and provide a rationale for the observed activities.


Subject(s)
Benzimidazoles/chemistry , Cyclin-Dependent Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Benzimidazoles/pharmacology , Humans , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology
15.
Zhong Yao Cai ; 26(5): 326-8, 2003 May.
Article in Chinese | MEDLINE | ID: mdl-14535013

ABSTRACT

OBJECTIVE: To establish a new method to discriminate Aaron's beard by Fourier transformation infrared spectrometry. METHODS: Attenuation Reflection-Fourier transformation infrared spectrometry with clustering analysis was used to the identification of Aaron's beard. RESULTS: There were obvious differences in Aaron's beard. The results are consistent with that of morphologic study. CONCLUSION: This method is rapid, simple and economical, and can be used to the quality control.


Subject(s)
Hypericum/chemistry , Plants, Medicinal/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Cluster Analysis , Drug Contamination , Hypericum/classification , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...