Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Glob Chang Biol ; 27(4): 941-955, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33222345

ABSTRACT

Among the global coordinated patterns in soil temperature and methane emission from wetlands, a declining trend of optimal soil temperature for methane emissions from low to high latitudes has been witnessed, while the corresponding trend along the altitudinal gradient has not yet been investigated. We therefore selected two natural wetlands located at contrasting climatic zones from foothill and mountainside of Nepal Himalayas, to test: (1) whether the optimal temperature for methane emissions decreases from low to high altitude, and (2) whether there is a difference in temperature sensitivity of methane emissions from those wetlands. We found significant spatial and temporal variation of methane emissions between the two wetlands and seasons. Soil temperature was the dominant driver for seasonal variation in methane emissions from both wetlands, though its effect was perplexed by the level of standing water, aquatic plants, and dissolved organic carbon, particularly in the deep water area. When integrative comparison was conducted by adding the existing data from wetlands of diverse altitudes, and the latitude-for-altitude effect was taken into account, we found the baseline soil temperatures decrease whilst the altitude rises with respect to a rapid increase in methane emission from all wetlands, however, remarkably higher sensitivity of methane emissions to soil temperature (apparent Q10 ) was found in mid-altitude wetland. We provide the first evidence of an apparent decline in optimal temperature for methane emissions with increasing elevation. These findings suggest a convergent pattern of methane emissions with respect to seasonal temperature shifts from wetlands along altitudinal gradient, while a divergent pattern in temperature sensitivities exhibits a single peak in mid-altitude.


Subject(s)
Methane , Wetlands , Altitude , Methane/analysis , Nepal , Soil , Temperature
2.
Sci Total Environ ; 697: 133945, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31473551

ABSTRACT

The strength of methane (CH4) source of mangroves is not well understood, especially when including all CH4 pathways in consideration. This study measured CH4 fluxes by five pathways (sediments, pneumatophores, water surface, leaves, and stems) from four typical mangrove forests, including Kandelia candel without pneumatophores and three species with pneumatophores: Sonneratia apetala, Laguncularia racemosa and Bruguiera gymnorhiza-Bruguiera sexangula. The CH4 fluxes from sediments were 4.82±1.46mgCH4m-2h-1 for K. candel and 1.36±0.17mgCH4m-2h-1 for the other three with pneumatophores. Among the three communities with pneumatophores, S. apetala community had significantly greater emission rate than the other two (P<0.05). Pneumatophores in S. apetala were found to significantly decrease CH4 emission from sediments (P<0.01), while those in B. gymnorhiza-B. sexangula were significantly increase it (P<0.05). CH4 fluxes from waters were 3.48±1.11mgCH4m-2h-1, with the highest emission rate in the K. candel community for the duck farming. Leaves of mangroves except for those of K. candel were a weak CH4 daytime sink, but stems were a weak source. The total 72ha of mangroves in the Changning river basin emitted about 8.10Gg CH4 per year, with a weighted emission rate of about 1.29mgCH4m-2h-1. Our results suggested that mangroves are only a small methane source to atmosphere with great contribution from sediments and waters, only slight contribution from leaves and stems. Pneumatophores of different mangrove species played different roles in CH4 fluxes from sediments.


Subject(s)
Air Pollutants/analysis , Introduced Species , Methane/analysis , Wetlands , China , Environmental Monitoring , Rhizophoraceae
3.
Glob Chang Biol ; 21(12): 4436-48, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26220607

ABSTRACT

Understanding the responses of lake systems to past climate change and human activity is critical for assessing and predicting the fate of lake carbon (C) in the future. In this study, we synthesized records of the sediment accumulation from 82 lakes and of C sequestration from 58 lakes with direct organic C measurements throughout China. We also identified the controlling factors of the long-term sediment and C accumulation dynamics in these lakes during the past 12 ka (1 ka = 1000 cal yr BP). Our results indicated an overall increasing trend of sediment and C accumulation since 12 ka, with an accumulation peak in the last couple of millennia for lakes in China, corresponding to terrestrial organic matter input due to land-use change. The Holocene lake sediment accumulation rate (SAR) and C accumulation rate (CAR) averaged (mean ± SE) 0.47 ± 0.05 mm yr(-1) and 7.7 ± 1.4 g C m(-2)  yr(-1) in China, respectively, comparable to the previous estimates for boreal and temperate regions. The SAR for lakes in the East Plain of subtropical China (1.05 ± 0.28 mm yr(-1) ) was higher than those in other regions (P < 0.05). However, CAR did not vary significantly among regions. Overall, the variability and history of climate and anthropogenic interference regulated the temporal and spatial dynamics of sediment and C sequestration for lakes in China. We estimated the total amount of C burial in lakes of China as 8.0 ± 1.0 Pg C. This first estimation of total C storage and dynamics in lakes of China confirms the importance of lakes in land C budget in monsoon-influenced regions.


Subject(s)
Carbon Sequestration , Carbon/analysis , Climate Change , Geologic Sediments/analysis , Lakes/analysis , China , Climate , Time Factors
4.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3467-74, 2015 Nov.
Article in Chinese | MEDLINE | ID: mdl-26915204

ABSTRACT

Based on a new process-based model, TRIPLEX-GHG, this paper analyzed the spatio-temporal variations of natural wetland CH4 emissions over China under different future climate change scenarios. When natural wetland distributions were fixed, the amount of CH4 emissions from natural wetland ecosystem over China would increase by 32.0%, 55.3% and 90.8% by the end of 21st century under three representative concentration pathways (RCPs) scenarios, RCP2. 6, RCP4.5 and RCP8.5, respectively, compared with the current level. Southern China would have higher CH4 emissions compared to that from central and northern China. Besides, there would be relatively low emission fluxes in western China while relatively high emission fluxes in eastern China. Spatially, the areas with relatively high CH4 emission fluxes would be concentrated in the middle-lower reaches of the Yangtze River, the Northeast and the coasts of the Pearl River. In the future, most natural wetlands would emit more CH4 for RCP4.5 and RCP8.5 than that of 2005. However, under RCP2.6 scenario, the increasing trend would be curbed and CH4 emissions (especially from the Qinghai-Tibet Plateau) begin to decrease in the late 21st century.


Subject(s)
Air Pollutants/analysis , Climate Change , Environmental Monitoring , Methane/analysis , Wetlands , China , Spatio-Temporal Analysis
5.
PLoS One ; 9(8): e104013, 2014.
Article in English | MEDLINE | ID: mdl-25083711

ABSTRACT

With the economic development of China, air pollutants are also growing rapidly in recent decades, especially in big cities of the country. To understand the relationship between economic condition and air pollutants in big cities, we analysed the socioeconomic indictors such as Gross Regional Product per capita (GRP per capita), the concentration of air pollutants (PM10, SO2, NO2) and the air pollution index (API) from 2003 to 2012 in 31 provincial capitals of mainland China. The three main industries had a quadratic correlation with NO2, but a negative relationship with PM10 and SO2. The concentration of air pollutants per ten thousand yuan decreased with the multiplying of GRP in the provincial cities. The concentration of air pollutants and API in the provincial capital cities showed a declining trend or inverted-U trend with the rise of GRP per capita, which provided a strong evidence for the Environmental Kuznets Curve (EKC), that the environmental quality first declines, then improves, with the income growth. The results of this research improved our understanding of the alteration of atmospheric quality with the increase of social economy and demonstrated the feasibility of sustainable development for China.


Subject(s)
Air Pollutants/analysis , Air Pollution/economics , Air Pollution/history , Cities/economics , Economic Development , China , Geography , Gross Domestic Product , History, 21st Century , Industry , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Regression Analysis , Sulfur Dioxide/analysis
6.
Glob Chang Biol ; 19(1): 19-32, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23504718

ABSTRACT

Sources of methane (CH4 ) become highly variable for countries undergoing a heightened period of development due to both human activity and climate change. An urgent need therefore exists to budget key sources of CH4 , such as wetlands (rice paddies and natural wetlands) and lakes (including reservoirs and ponds), which are sensitive to these changes. For this study, references in relation to CH4 emissions from rice paddies, natural wetlands, and lakes in China were first reviewed and then reestimated based on the review itself. Total emissions from the three CH4 sources were 11.25 Tg CH4  yr(-1) (ranging from 7.98 to 15.16 Tg CH4  yr(-1) ). Among the emissions, 8.11 Tg CH4  yr(-1) (ranging from 5.20 to 11.36 Tg CH4  yr(-1) ) derived from rice paddies, 2.69 Tg CH4  yr(-1) (ranging from 2.46 to 3.20 Tg CH4  yr(-1) ) from natural wetlands, and 0.46 Tg CH4  yr(-1) (ranging from 0.33 to 0.59 Tg CH4  yr(-1) ) from lakes (including reservoirs and ponds). Plentiful water and warm conditions, as well as its large rice paddy area make rice paddies in southeastern China the greatest overall source of CH4 , accounting for approximately 55% of total paddy emissions. Natural wetland estimates were slightly higher than the other estimates owing to the higher CH4 emissions recorded within Qinghai-Tibetan Plateau peatlands. Total CH4 emissions from lakes were estimated for the first time by this study, with three quarters from the littoral zone and one quarter from lake surfaces. Rice paddies, natural wetlands, and lakes are not constant sources of CH4 , but decreasing ones influenced by anthropogenic activity and climate change. A new progress-based model used in conjunction with more observations through model-data fusion approach could help obtain better estimates and insights with regard to CH4 emissions deriving from wetlands and lakes in China.


Subject(s)
Lakes , Methane/metabolism , Oryza/metabolism , Wetlands , China
7.
PLoS One ; 8(1): e53878, 2013.
Article in English | MEDLINE | ID: mdl-23342029

ABSTRACT

The study aimed to understand the inter-annual variations of methane (CH(4)) emissions from an open fen on the Qinghai-Tibetan Plateau (QTP) from 2005 to 2007. The weighted mean CH(4) emission rate was 8.37±11.32 mg CH(4) m(-2 )h(-1) during the summers from 2005 to 2007, falling in the range of CH(4) fluxes reported by other studies, with significant inter-annual and spatial variations. The CH(4) emissions of the year of 2006 (2.11±3.48 mg CH(4) m(-2 )h(-1)) were 82% lower than the mean value of the years 2005 and 2007 (13.91±17.80 mg CH(4) m(-2 )h(-1) and 9.44±14.32 mg CH(4) m(-2 )h(-1), respectively), responding to the inter-annual changes of standing water depths during the growing season of the three years. Significant drawdown of standing water depth is believed to cause such significant reduction in CH(4) emissions from wetlands in the year 2006, probably through changing the methanogen composition and decreasing its community size as well as activating methanotrophs to enhance CH(4) oxidation. Our results are helpful to understand the inter-annual variations of CH(4) emission and provide a more reasonable regional budget of CH(4) emission from wetlands on the QTP and even for world-wide natural wetlands under climate change.


Subject(s)
Methane/analysis , Wetlands , Air/analysis , Greenhouse Effect , Methane/chemistry , Rain/chemistry , Seasons , Temperature , Tibet , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...